CSC263 Tutorial #10 MSTs

March 24, 2023

Things covered in this tutorial

- \star What's an MST?
- ★ How to find an MST?
- * How to prove that a solution is an optimal (i.e. minimum/maximum weight) solution?

MSTs

Task: What does MST stand for?

Task: What does MST stand for?

Answer: Minimum Spanning Tree. (Or sometimes, *Maximum* Spanning Tree!)

MSTs

Task: Find a MST (in both definitions!) on the following graph. Are there multiple MSTs?

Some properties of trees

Task: List any properties of trees that you know of!

Some properties of trees

Task: List any properties of trees that you know of!Trees satisfy the following:

Some properties of trees

Task: List any properties of trees that you know of!

Trees satisfy the following:

- \star A tree is connected.
- * Between any two vertices u and v in a tree, there is a *unique* path from u to v.
- \star If a tree has N vertices, then it has N-1 edges.
- \star A graph is a tree iff it is connected and has no cycles.

A cycler is a set S of vertices in G such that every cycle contains at least one edge in S.

A cycler is a set S of vertices in G such that every cycle contains at least one edge in S.

Task: Identify a cycler in the below graph, taking as few edges as you can. What is its *complement*?

A cycler is a set S of vertices in G such that every cycle contains at least one edge in S.

Task: Identify a cycler in the below graph, taking as few edges as you can. What is its *complement*?

A cycler is a set S of vertices in G such that every cycle contains at least one edge in S.

Task: Identify a cycler in the below graph, taking as few edges as you can. What is its *complement*?

Notice anything about the complement?

Theorem

A set S of edges is a cycler iff its complement S^c has no cycles.

Theorem

A set S of edges is a cycler iff its complement S^c has no cycles.

Proof:

Seriously though: prove it!

A cycler is a set S of vertices in G such that every cycle contains at least one edge in S.

Theorem

A set S of edges is a cycler iff its complement S^c has no cycles.

Theorem

Assuming G is connected and has positive edge weights, a set S of edges is a minimum cycler iff its complement S^c is ...

Task: Fill in the blank!

Theorem

A set S of edges is a cycler iff its complement S^c has no cycles.

Theorem

Assuming G is connected and has positive edge weights, a set S of edges is a minimum cycler iff its complement S^c is a maximum spanning tree.

Task: Fill in the blank!

Theorem

Assuming G is connected and has positive edge weights, a set S of edges is a minimum cycler iff its complement S^c is a maximum spanning tree.

Proof:

Theorem

Assuming G is connected and has positive edge weights, a set S of edges is a minimum cycler iff its complement S^c is a maximum spanning tree.

Task: Complete the proof!

 (\Rightarrow) Suppose S is a minimum cycler. Then:

* S^c must be a spanning tree, because Thus any maximum spanning tree T must have $w(T) \ge w(S^c)$.

* $w(S^c) \ge w(T)$ for any maximum spanning tree T, because Since $w(S^c) = w(T)$ for any maximum spanning tree T, it follows S^c is a maximum spanning tree.

(\Leftarrow) Suppose S^c is a maximum spanning tree. Then:

* ...

* ...

Since . . .

Multiple MSTs??

Task: Find as many MinimumSTs as possible on the following graph! Then do the second tutorial activity.

