CSC263 Tutorial #11 MSTs

March 31, 2023

Things covered in this tutorial

- $\star\,$ What's the Disjoint Set ADT?
- $\star\,$ How is it implemented using trees?

The **Disjoint Set** ADT stores a collection of nonempty sets with disjoint elements S_1, \ldots, S_k . Each set has a representative.

Question: What operations are supported by the Disjoint Set ADT?

The **Disjoint Set** ADT stores a collection of nonempty sets with disjoint elements S_1, \ldots, S_k . Each set has a representative.

Question: What operations are supported by the Disjoint Set ADT?

Answer:

The **Disjoint Set** ADT stores a collection of nonempty sets with disjoint elements S_1, \ldots, S_k . Each set has a representative.

Question: What operations are supported by the Disjoint Set ADT?

Answer:

* MakeSet(x): Add a singleton set {x} to the collection of disjoint sets.

The **Disjoint Set** ADT stores a collection of nonempty sets with disjoint elements S_1, \ldots, S_k . Each set has a representative.

Question: What operations are supported by the Disjoint Set ADT?

Answer:

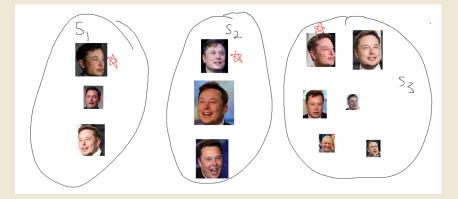
- * MakeSet(x): Add a singleton set {x} to the collection of disjoint sets.
- * FindSet(x): Return the representative of the set containing x.

The **Disjoint Set** ADT stores a collection of nonempty sets with disjoint elements S_1, \ldots, S_k . Each set has a representative.

Question: What operations are supported by the Disjoint Set ADT?

Answer:

- * MakeSet(x): Add a singleton set {x} to the collection of disjoint sets.
- * FindSet(x): Return the representative of the set containing x.
- * Union(x, y): Combine the two disjoint sets S_i containing x and S_j containing y respectively (and ignore if $S_i = S_j$).



Task: Apply the following disjoint set operations, and draw the result as shown in the previous slide.

- * MakeSet(Chungi)
- * MakeSet(Winni)
- * MakeSet(Bob)
- * MakeSet(727)
- * MakeSet(Elong)
- * MakeSet(420)

- * MakeSet(Mogus)
- * Union(420, Mogus)
- * Union(Mogus, Bob)
- * Union(Winni, 727)
- * Union(Winni, Bob)
- * Union(Winni, Chungi)

Recall how we tried to implement disjoint sets with linked lists, but that wasn't very efficient...

Linked list with pointer to head

MakeSet and **FindSet** are fast, **Union** now becomes the time-consuming one, especially if appending a long list.

Amortized analysis: The total cost of a sequence of **m** operations.

- → Bad sequence: m/2 MakeSet, then m/2 1 Union, then 1 FindSet.
 - Always let the longer list append, like 1 append 1, 2 append 1, 3 append 1, ..., m/2 -1 append 1.
- → Total cost: $\Theta(1+2+3+...+m/2-1) = \Theta(m^2)$

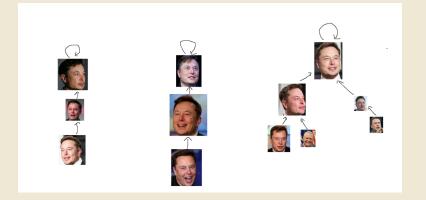
Linked list with union-by-weight

Union-by-weight sounds like a simple heuristic, but it actually provides significant improvement.

For a sequence of **m** operations which includes **n** MakeSet operations, i.e., **n** elements in total, the total cost is **O(m + n log n)**

i.e., for the previous sequence with m/2 MakeSet and m/2 - 1 Union, the total cost would be $O(m \log m)$, as opposed to $\Theta(m^2)$ when without union-by-weight.

We implement Disjoint Set using an "Inverted Tree":



We use two tricks to speed up the operations: Union By Rank and Path Compression.

Task: Using an inverted tree implementation with Union by Rank and Path Compression, apply the following disjoint set operations.

- * MakeSet(C)
- * MakeSet(W)
- * MakeSet(B)
- * MakeSet(7)
- * MakeSet(E)
- * MakeSet(4)
- * MakeSet(M)

- \star Union(4, M)
- * Union(M, B)
- \star Union(W, 7)
- \star Union(7, M)
- * Findset(7)
- * Findset(M)
- * Union(W, C)

Task: Complete the tutorial activity! (Why can't we just traverse an inverted tree?)

Task: Complete the tutorial activity! (Why can't we just traverse an inverted tree?)

Hint: The two attributes needed are named node.next and node.tail respectively.

Goodbye!

Good luck on exams!