
CSC263 Tutorial #3
BSTs, but with duplicates

January 27, 2023

1 / 14



Things that will be covered in this tutorial

⋆ How do BST operations work?

⋆ What changes do I need to make to a BST to allow duplicate
elements?

⋆ How bad does it get if there are many duplicate elements in a BST?

2 / 14



Things that will be covered in this tutorial

⋆ How do BST operations work?

⋆ What changes do I need to make to a BST to allow duplicate
elements?

⋆ How bad does it get if there are many duplicate elements in a BST?

2 / 14



Binary Search Trees

Question: Which of the following is a binary search tree?

100

50

40

30 20

45

90 100

50

40 60

120

100

50

40 43 41

60 70

100

40

40 40

70

3 / 14



Binary Search Trees

100

50

40

30 45

60

120

110

Task: Perform the following operations on the above BST, in order:

⋆ Successor(100).

⋆ Successor(45).

⋆ Successor(120).

4 / 14



Binary Search Trees

100

50

40

30 45

60

120

110

Task: Perform the following operations on the above BST, in order:

⋆ Insert(130).

⋆ Insert(105).

⋆ Delete(60).

⋆ Delete(50).

⋆ Delete(100).

5 / 14



Binary Search Trees

100

50

40

30 45

60

120

110

Task: Perform the following operations on the above BST, in order:

⋆ Insert(130).

⋆ Insert(105).

⋆ Delete(60).

⋆ Delete(50).

⋆ Delete(100).

6 / 14



BST Insert... but with duplicates

100

50

40

30 45

60

120

110

100

50

40

30 45

60

120

110

110

Insert(110)

Note: For now, equal keys are treated the same as larger keys.

7 / 14



BST Insert... but with duplicates

Insert(D, key, value):

if D is empty:

D.root.key = key

D.root.value = value

else if D.root.key >= key:

Insert(D.left, key, value)

else:

Insert(D.right, key, value)

Tutorial Question: Modify the above algorithm to handle inserting
duplicate values (i.e. values that already exist in the BST).
Hint: You only need to modify one line!

8 / 14



BST Insert... but with duplicates

Insert(D, key, value):

if D is empty:

D.root.key = key

D.root.value = value

else if D.root.key >= key:

Insert(D.left, key, value)

else:

Insert(D.right, key, value)

Tutorial Question: Modify the above algorithm to handle inserting
duplicate values (i.e. values that already exist in the BST).
Hint: You only need to modify one line!

8 / 14



BST Insert... but with duplicates

Insert(D, key, value):

if D is empty:

D.root.key = key

D.root.value = value

else if D.root.key > key:

Insert(D.left, key, value)

else:

Insert(D.right, key, value)

Note that in Insert(), everything but the recursive call is constant-time.
Question:

⋆ Consider inserting 4 identical elements 1, 1, 1, 1 into an empty BST.
How many Insert() calls (including recursive calls) are needed?

⋆ Tutorial Question: Consider inserting n identical elements 1, 1, . . . , 1
into an empty BST. How many Insert() calls (including recursive
calls) are needed?

9 / 14



BST Insert... but with duplicates

Insert(D, key, value):

if D is empty:

D.root.key = key

D.root.value = value

else if D.root.key > key:

Insert(D.left, key, value)

else:

Insert(D.right, key, value)

Note that in Insert(), everything but the recursive call is constant-time.

Question:

⋆ Consider inserting 4 identical elements 1, 1, 1, 1 into an empty BST.
How many Insert() calls (including recursive calls) are needed?

⋆ Tutorial Question: Consider inserting n identical elements 1, 1, . . . , 1
into an empty BST. How many Insert() calls (including recursive
calls) are needed?

9 / 14



BST Insert... but with duplicates

Insert(D, key, value):

if D is empty:

D.root.key = key

D.root.value = value

else if D.root.key > key:

Insert(D.left, key, value)

else:

Insert(D.right, key, value)

Note that in Insert(), everything but the recursive call is constant-time.
Question:

⋆ Consider inserting 4 identical elements 1, 1, 1, 1 into an empty BST.
How many Insert() calls (including recursive calls) are needed?

⋆ Tutorial Question: Consider inserting n identical elements 1, 1, . . . , 1
into an empty BST. How many Insert() calls (including recursive
calls) are needed?

9 / 14



BST Insert... but with duplicates

Insert(D, key, value):

if D is empty:

D.root.key = key

D.root.value = value

else if D.root.key > key:

Insert(D.left, key, value)

else:

Insert(D.right, key, value)

Note that in Insert(), everything but the recursive call is constant-time.
Question:

⋆ Consider inserting 4 identical elements 1, 1, 1, 1 into an empty BST.
How many Insert() calls (including recursive calls) are needed?

⋆ Tutorial Question: Consider inserting n identical elements 1, 1, . . . , 1
into an empty BST. How many Insert() calls (including recursive
calls) are needed?

9 / 14



BST Insert... but with duplicates

Insert(D, key, value):

if D is empty:

D.root.key = key

D.root.value = value

else if D.root.key > key:

Insert(D.left, key, value)

else:

Insert(D.right, key, value)

Note that in Insert(), everything but the recursive call is constant-time.
Question:

⋆ Consider inserting 4 identical elements 1, 1, 1, 1 into an empty BST.
How many Insert() calls (including recursive calls) are needed?

⋆ Tutorial Question: Consider inserting n identical elements 1, 1, . . . , 1
into an empty BST. How many Insert() calls (including recursive
calls) are needed?

9 / 14



Improving BST insert

Each node will now have a goLeft boolean attribute (default True).

10 / 14



Improving BST insert

Each node will now have a goLeft boolean attribute (default True).

T

10 / 14



Improving BST insert

Each node will now have a goLeft boolean attribute (default True).

F

T

10 / 14



Improving BST insert

Each node will now have a goLeft boolean attribute (default True).

T

T T

10 / 14



Improving BST insert

Each node will now have a goLeft boolean attribute (default True).

F

F

T

T

10 / 14



Improving BST insert

Each node will now have a goLeft boolean attribute (default True).

T

F

T

F

T

10 / 14



Improving BST insert

Each node will now have a goLeft boolean attribute (default True).

F

T

T T

F

T

10 / 14



Improving BST insert

Each node will now have a goLeft boolean attribute (default True).

T

T

T T

T

T T

10 / 14



Improving BST insert

Each node will now have a goLeft boolean attribute (default True).

F

F

F

T

T

T

T T

10 / 14



Improving BST insert

Insert(D, key, value):

if D is empty:

D.root.key = key

D.root.value = value

else if D.root.key > key:

Insert(D.left, key, value)

else:

Insert(D.right, key, value)

Tutorial Question: Modify the BST insert algorithm to handle goLeft.

11 / 14



Improving BST insert

Consider inserting n identical elements into an empty BST with goLeft

implemented.

Question: Approximately how long does the ith insertion take?
Answer: log2(i).

Tutorial Question: Approximately how long does it take to insert all n
identical elements? Can you bound it with a Big-Θ expression?
Hint:

⋆ log(x) < log(y) whenever x < y .

⋆ log( xy ) < log(x)− log(y).

12 / 14



Improving BST insert

Consider inserting n identical elements into an empty BST with goLeft

implemented.

Question: Approximately how long does the ith insertion take?

Answer: log2(i).

Tutorial Question: Approximately how long does it take to insert all n
identical elements? Can you bound it with a Big-Θ expression?
Hint:

⋆ log(x) < log(y) whenever x < y .

⋆ log( xy ) < log(x)− log(y).

12 / 14



Improving BST insert

Consider inserting n identical elements into an empty BST with goLeft

implemented.

Question: Approximately how long does the ith insertion take?
Answer: log2(i).

Tutorial Question: Approximately how long does it take to insert all n
identical elements? Can you bound it with a Big-Θ expression?
Hint:

⋆ log(x) < log(y) whenever x < y .

⋆ log( xy ) < log(x)− log(y).

12 / 14



Improving BST insert

Consider inserting n identical elements into an empty BST with goLeft

implemented.

Question: Approximately how long does the ith insertion take?
Answer: log2(i).

Tutorial Question: Approximately how long does it take to insert all n
identical elements? Can you bound it with a Big-Θ expression?
Hint:

⋆ log(x) < log(y) whenever x < y .

⋆ log( xy ) < log(x)− log(y).

12 / 14



Improving BST insert, part 2

Instead of goLeft, we will randomly choose to insert duplicates into the
left or right subtree.

Insert(D, key, value):

if D is empty:

D.root.key = key

D.root.value = value

else if D.root.key > key:

Insert(D.left, key, value)

else:

Insert(D.right, key, value)

Tutorial Question: Modify the above to randomly insert identical keys,
with a random(0, 1) call. What’s the worst case of inserting n identical
elements here?
Bonus: What’s the average cost of inserting n identical elements?

13 / 14



Improving BST insert, part 2

Instead of goLeft, we will randomly choose to insert duplicates into the
left or right subtree.

Insert(D, key, value):

if D is empty:

D.root.key = key

D.root.value = value

else if D.root.key > key:

Insert(D.left, key, value)

else:

Insert(D.right, key, value)

Tutorial Question: Modify the above to randomly insert identical keys,
with a random(0, 1) call. What’s the worst case of inserting n identical
elements here?
Bonus: What’s the average cost of inserting n identical elements?

13 / 14



Improving BST insert, part 3

Open your quiz, and go to question 3!

14 / 14


