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AVL Trees
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Things covered in this tutorial

⋆ What’s an AVL tree?

⋆ How do I insert into or delete from an AVL tree?

⋆ How do I rotate?

⋆ How can I make the AVL tree very slow?1

1Still O(log n) though...
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First of all... BST review

To insert into a BST:

⋆ Do a BST search until you find an empty spot.

⋆ Insert the node into the empty spot.

To delete a node from a BST, there are three cases:

⋆ The node has no children: delete the node.

⋆ The node has one child: delete the node, promote the child.

⋆ The node has two children: swap the node with its successor, then
delete the node (which has 0 or 1 children).
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AVL trees

Height of a binary tree: starts from 0.
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AVL trees

Balance factor of a node: right subtree height - left subtree height
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Not an AVL tree!

AVL trees are BSTs that satisfy the AVL invariant: every node has a
balance factor of −1, 0, or 1.
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AVL trees

AVL trees are BSTs that satisfy the AVL invariant: every node has a
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AVL trees: insertion

Insert(root, key, value):

# BST insert as usual

BST_insert(root, key, value)

# Fix balance, update height

root.balance_factor = root.right.height - root.left.height

if root.balance_factor < -1 or root.balance_factor > 1:

fix_imbalance(D) # Rotations!

D.height = max(D.left.height, D.right.height) + 1

Perform the following:

⋆ Insert(85).

⋆ Insert(115).

For Insert(115), we needed to do a
left-right rotation.
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AVL trees: deletion

Similar to insertion: delete as in a BST, and then rebalance and update
attributes. However, multiple rebalances may be needed.
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AVL trees: deletion

Worst case: O(log n) rotations! (Triangles are subtrees with labelled
heights)
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