
CSC263 Tutorial #4
AVL Trees

February 3, 2023

1 / 9

Things covered in this tutorial

⋆ What’s an AVL tree?

⋆ How do I insert into or delete from an AVL tree?

⋆ How do I rotate?

⋆ How can I make the AVL tree very slow?1

1Still O(log n) though...
2 / 9

First of all... BST review

To insert into a BST:

⋆ Do a BST search until you find an empty spot.

⋆ Insert the node into the empty spot.

To delete a node from a BST, there are three cases:

⋆ The node has no children: delete the node.

⋆ The node has one child: delete the node, promote the child.

⋆ The node has two children: swap the node with its successor, then
delete the node (which has 0 or 1 children).

3 / 9

First of all... BST review

To insert into a BST:

⋆ Do a BST search until you find an empty spot.

⋆ Insert the node into the empty spot.

To delete a node from a BST, there are three cases:

⋆ The node has no children: delete the node.

⋆ The node has one child: delete the node, promote the child.

⋆ The node has two children: swap the node with its successor, then
delete the node (which has 0 or 1 children).

3 / 9

First of all... BST review

To insert into a BST:

⋆ Do a BST search until you find an empty spot.

⋆ Insert the node into the empty spot.

To delete a node from a BST, there are three cases:

⋆ The node has no children: delete the node.

⋆ The node has one child: delete the node, promote the child.

⋆ The node has two children: swap the node with its successor, then
delete the node (which has 0 or 1 children).

3 / 9

First of all... BST review

To insert into a BST:

⋆ Do a BST search until you find an empty spot.

⋆ Insert the node into the empty spot.

To delete a node from a BST, there are three cases:

⋆ The node has no children: delete the node.

⋆ The node has one child: delete the node, promote the child.

⋆ The node has two children: swap the node with its successor, then
delete the node (which has 0 or 1 children).

3 / 9

AVL trees

Height of a binary tree: starts from 0.

0

1

2 2

3

1

4 / 9

AVL trees

Balance factor of a node: right subtree height - left subtree height

-2

1

0 1

0

0

Not an AVL tree!

AVL trees are BSTs that satisfy the AVL invariant: every node has a
balance factor of −1, 0, or 1.

5 / 9

AVL trees

Balance factor of a node: right subtree height - left subtree height

-2

1

0 1

0

0

Not an AVL tree!

AVL trees are BSTs that satisfy the AVL invariant: every node has a
balance factor of −1, 0, or 1.

5 / 9

AVL trees

AVL trees are BSTs that satisfy the AVL invariant: every node has a
balance factor of −1, 0, or 1.

100

90

80 95

97

120

110

An AVL tree

6 / 9

AVL trees: insertion

Insert(root, key, value):

BST insert as usual

BST_insert(root, key, value)

Fix balance, update height

root.balance_factor = root.right.height - root.left.height

if root.balance_factor < -1 or root.balance_factor > 1:

fix_imbalance(D) # Rotations!

D.height = max(D.left.height, D.right.height) + 1

Perform the following:

⋆ Insert(85).

⋆ Insert(115).

For Insert(115), we needed to do a
left-right rotation.

100

90

80 95

97

120

110

7 / 9

AVL trees: insertion

Insert(root, key, value):

BST insert as usual

BST_insert(root, key, value)

Fix balance, update height

root.balance_factor = root.right.height - root.left.height

if root.balance_factor < -1 or root.balance_factor > 1:

fix_imbalance(D) # Rotations!

D.height = max(D.left.height, D.right.height) + 1

Perform the following:

⋆ Insert(85).

⋆ Insert(115).

For Insert(115), we needed to do a
left-right rotation.

100

90

80

85

95

97

120

110

7 / 9

AVL trees: insertion

Insert(root, key, value):

BST insert as usual

BST_insert(root, key, value)

Fix balance, update height

root.balance_factor = root.right.height - root.left.height

if root.balance_factor < -1 or root.balance_factor > 1:

fix_imbalance(D) # Rotations!

D.height = max(D.left.height, D.right.height) + 1

Perform the following:

⋆ Insert(85).

⋆ Insert(115).

For Insert(115), we needed to do a
left-right rotation.

100

90

80

85

95

97

120

110

115

7 / 9

AVL trees: insertion

Insert(root, key, value):

BST insert as usual

BST_insert(root, key, value)

Fix balance, update height

root.balance_factor = root.right.height - root.left.height

if root.balance_factor < -1 or root.balance_factor > 1:

fix_imbalance(D) # Rotations!

D.height = max(D.left.height, D.right.height) + 1

Perform the following:

⋆ Insert(85).

⋆ Insert(115).

For Insert(115), we needed to do a
left-right rotation.

100

90

80

85

95

97

120

115

110

7 / 9

AVL trees: insertion

Insert(root, key, value):

BST insert as usual

BST_insert(root, key, value)

Fix balance, update height

root.balance_factor = root.right.height - root.left.height

if root.balance_factor < -1 or root.balance_factor > 1:

fix_imbalance(D) # Rotations!

D.height = max(D.left.height, D.right.height) + 1

Perform the following:

⋆ Insert(85).

⋆ Insert(115).

For Insert(115), we needed to do a
left-right rotation.

100

90

80

85

95

97

115

110 120

7 / 9

AVL trees: insertion

Insert(root, key, value):

BST insert as usual

BST_insert(root, key, value)

Fix balance, update height

root.balance_factor = root.right.height - root.left.height

if root.balance_factor < -1 or root.balance_factor > 1:

fix_imbalance(D) # Rotations!

D.height = max(D.left.height, D.right.height) + 1

Perform the following:

⋆ Insert(85).

⋆ Insert(115).

For Insert(115), we needed to do a
left-right rotation.

100

90

80

85

95

97

115

110 120

7 / 9

AVL trees: deletion

Similar to insertion: delete as in a BST, and then rebalance and update
attributes. However, multiple rebalances may be needed.

8 / 9

AVL trees: deletion

Similar to insertion: delete as in a BST, and then rebalance and update
attributes. However, multiple rebalances may be needed.

100

90

80

75

70

85

95

97

115

110 120

125

8 / 9

AVL trees: deletion

Similar to insertion: delete as in a BST, and then rebalance and update
attributes. However, multiple rebalances may be needed.

110

90

80

75

70

85

95

97

115

100 120

125

8 / 9

AVL trees: deletion

Similar to insertion: delete as in a BST, and then rebalance and update
attributes. However, multiple rebalances may be needed.

110

90

80

75

70

85

95

97

115

120

125

8 / 9

AVL trees: deletion

Similar to insertion: delete as in a BST, and then rebalance and update
attributes. However, multiple rebalances may be needed.

110

90

80

75

70

85

95

97

120

115 125

8 / 9

AVL trees: deletion

Similar to insertion: delete as in a BST, and then rebalance and update
attributes. However, multiple rebalances may be needed.

90

80

75

70

85

110

95

97

120

115 125

8 / 9

AVL trees: deletion

Worst case: O(log n) rotations! (Triangles are subtrees with labelled
heights)

9 / 9

AVL trees: deletion

Worst case: O(log n) rotations! (Triangles are subtrees with labelled
heights)

5

3

1

x

9 / 9

