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Things covered in this tutorial

⋆ What is amortized analysis?

⋆ What is the accounting method?

⋆ How do I simulate a queue with two stacks efficiently?
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Amortized analysis

... analyzes the average runtime per operation of a sequence of
operations.
Not analyzing the runtime of a single operation!
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Amortized analysis

dynamic_array_insert(A, x):

if A is empty:

A = new array of size 1

if A is full:

make new array A’ with length 2 * |A|

copy everything in A into A’

A = A’

insert x into A

Question: Suppose there are n elements in a dynamic array A. How many
array write operations are needed to insert another element into A?

Answer:

⋆ If n = 2k , then it takes n + 1 array writes: n to copy the n existing
elements into the new array A′, and 1 for the new element.

⋆ Otherwise it takes 1 array write: just copy the new element.
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Amortized analysis
Question: Suppose there are n elements in a dynamic array A. How many
array write operations are needed to insert another element into A?

Answer:

⋆ If n = 2k , then it takes n + 1 array writes: n to copy the n existing
elements into the new array A′, and 1 for the new element.

⋆ Otherwise it takes 1 array write: just copy the new element.

Worst case runtime for a single insert operation:

O(n)!

But the worst case doesn’t occur too often...
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Accounting method
Question: Suppose I have an empty dynamic array, and I insert into the
array n times. What’s the worst case runtime per operation?

Answer: O(1). Proven using the accounting method!
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Accounting method
Let’s say we earn $1 per insert call, and pay $1 per array write. Do we
ever run out of money?

We run out of money!
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Accounting method
Let’s say we earn $3 per insert call, and pay $1 per array write. Do we
ever run out of money?

No, we will always have enough.
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Accounting method

← 3

$’s left for each element.
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Queue with two stacks

def Enqueue(Q, x):

if Size(S1) >= 12 and IsEmpty(S2):

while not IsEmpty(S1):

Push(S2, Pop(S1))

Push(S1, x)

return

def Dequeue(Q):

if IsEmpty(S2):

if IsEmpty(S1):

error "Dequeuing from an empty queue!"

else:

while not IsEmpty(S1):

Push(S2, Pop(S1))

return Pop(S2)

Task: Enqueue the numbers 1-15. Then dequeue 15 times.
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