
CSC263 Tutorial #6
Amortized Analysis

February 17, 2023

1 / 10

Things covered in this tutorial

⋆ What is amortized analysis?

⋆ What is the accounting method?

⋆ How do I simulate a queue with two stacks efficiently?

2 / 10

Amortized analysis

... analyzes the average runtime per operation of a sequence of
operations.
Not analyzing the runtime of a single operation!

3 / 10

Amortized analysis

dynamic_array_insert(A, x):

if A is empty:

A = new array of size 1

if A is full:

make new array A’ with length 2 * |A|

copy everything in A into A’

A = A’

insert x into A

Question: Suppose there are n elements in a dynamic array A. How many
array write operations are needed to insert another element into A?

Answer:

⋆ If n = 2k , then it takes n + 1 array writes: n to copy the n existing
elements into the new array A′, and 1 for the new element.

⋆ Otherwise it takes 1 array write: just copy the new element.

4 / 10

Amortized analysis

dynamic_array_insert(A, x):

if A is empty:

A = new array of size 1

if A is full:

make new array A’ with length 2 * |A|

copy everything in A into A’

A = A’

insert x into A

Question: Suppose there are n elements in a dynamic array A. How many
array write operations are needed to insert another element into A?

Answer:

⋆ If n = 2k , then it takes n + 1 array writes: n to copy the n existing
elements into the new array A′, and 1 for the new element.

⋆ Otherwise it takes 1 array write: just copy the new element.

4 / 10

Amortized analysis

dynamic_array_insert(A, x):

if A is empty:

A = new array of size 1

if A is full:

make new array A’ with length 2 * |A|

copy everything in A into A’

A = A’

insert x into A

Question: Suppose there are n elements in a dynamic array A. How many
array write operations are needed to insert another element into A?

Answer:

⋆ If n = 2k , then it takes n + 1 array writes: n to copy the n existing
elements into the new array A′, and 1 for the new element.

⋆ Otherwise it takes 1 array write: just copy the new element.

4 / 10

Amortized analysis
Question: Suppose there are n elements in a dynamic array A. How many
array write operations are needed to insert another element into A?

Answer:

⋆ If n = 2k , then it takes n + 1 array writes: n to copy the n existing
elements into the new array A′, and 1 for the new element.

⋆ Otherwise it takes 1 array write: just copy the new element.

Worst case runtime for a single insert operation:

O(n)!

But the worst case doesn’t occur too often...

5 / 10

Amortized analysis
Question: Suppose there are n elements in a dynamic array A. How many
array write operations are needed to insert another element into A?

Answer:

⋆ If n = 2k , then it takes n + 1 array writes: n to copy the n existing
elements into the new array A′, and 1 for the new element.

⋆ Otherwise it takes 1 array write: just copy the new element.

Worst case runtime for a single insert operation: O(n)!

But the worst case doesn’t occur too often...

5 / 10

Amortized analysis
Question: Suppose there are n elements in a dynamic array A. How many
array write operations are needed to insert another element into A?

Answer:

⋆ If n = 2k , then it takes n + 1 array writes: n to copy the n existing
elements into the new array A′, and 1 for the new element.

⋆ Otherwise it takes 1 array write: just copy the new element.

Worst case runtime for a single insert operation: O(n)!

But the worst case doesn’t occur too often...
5 / 10

Accounting method
Question: Suppose I have an empty dynamic array, and I insert into the
array n times. What’s the worst case runtime per operation?

Answer: O(1). Proven using the accounting method!

6 / 10

Accounting method
Question: Suppose I have an empty dynamic array, and I insert into the
array n times. What’s the worst case runtime per operation?

Answer: O(1). Proven using the accounting method!

6 / 10

Accounting method
Question: Suppose I have an empty dynamic array, and I insert into the
array n times. What’s the worst case runtime per operation?

Answer: O(1). Proven using the accounting method!

6 / 10

Accounting method
Let’s say we earn $1 per insert call, and pay $1 per array write. Do we
ever run out of money?

We run out of money!

7 / 10

Accounting method
Let’s say we earn $1 per insert call, and pay $1 per array write. Do we
ever run out of money?

We run out of money!

7 / 10

Accounting method
Let’s say we earn $3 per insert call, and pay $1 per array write. Do we
ever run out of money?

No, we will always have enough.

8 / 10

Accounting method
Let’s say we earn $3 per insert call, and pay $1 per array write. Do we
ever run out of money?

No, we will always have enough.

8 / 10

Accounting method

← 3

$’s left for each element.

9 / 10

Accounting method

2 ← 3

$’s left for each element.

9 / 10

Accounting method

1 2 ← 3

$’s left for each element.

9 / 10

Accounting method

0 1 2 ← 3

$’s left for each element.

9 / 10

Accounting method

0 1 2 2 ← 3

$’s left for each element.

9 / 10

Accounting method

1 2 1 1 ← 3

$’s left for each element.

9 / 10

Accounting method

0 1 0 0 2 ← 3

$’s left for each element.

9 / 10

Accounting method

0 1 0 0 2 2 ← 3

$’s left for each element.

9 / 10

Accounting method

0 1 0 0 2 2 2 ← 3

$’s left for each element.

9 / 10

Accounting method

0 1 0 0 2 2 2 2 ← 3

$’s left for each element.

9 / 10

Accounting method

1 2 1 1 1 1 1 1 ← 3

$’s left for each element.

9 / 10

Accounting method

0 1 0 0 0 0 0 0 2 ← 3

$’s left for each element.

9 / 10

Queue with two stacks

def Enqueue(Q, x):

if Size(S1) >= 12 and IsEmpty(S2):

while not IsEmpty(S1):

Push(S2, Pop(S1))

Push(S1, x)

return

def Dequeue(Q):

if IsEmpty(S2):

if IsEmpty(S1):

error "Dequeuing from an empty queue!"

else:

while not IsEmpty(S1):

Push(S2, Pop(S1))

return Pop(S2)

Task: Enqueue the numbers 1-15. Then dequeue 15 times.
10 / 10

