CSC263 Tutorial #9 DFS and Bipartite Graphs

March 17, 2023

Things covered in this tutorial

- $\star\,$ What's a bipartite graph?
- \star How can I check whether a graph is bipartite using DFS?

An undirected graph G = (V, E) is **bipartite** if we can partition its vertices into two subsets V_1 and V_2 , so that:

An undirected graph G = (V, E) is **bipartite** if we can partition its vertices into two subsets V_1 and V_2 , so that:

* $V_1 \cup V_2 = V$, $V_1 \cap V_2 = \emptyset$. In other words, each vertex belongs to either V_1 or V_2 , but not both.

An undirected graph G = (V, E) is **bipartite** if we can partition its vertices into two subsets V_1 and V_2 , so that:

- * $V_1 \cup V_2 = V$, $V_1 \cap V_2 = \emptyset$. In other words, each vertex belongs to either V_1 or V_2 , but not both.
- * Every edge must have one endpoint in V_1 and the other in V_2 . In other words, every edge must "cross" from V_1 to V_2 .

Task: Which of the following graphs are bipartite?

Colour the vertices to represent V_1 (black) and V_2 (white).

Colour the vertices to represent V_1 (black) and V_2 (white).

How to check if a graph is bipartite?

How to check if a graph is bipartite? DFS, but colour the nodes with alternating colours.

Question: Is this graph bipartite?

How to check if a graph is bipartite? DFS, but colour the nodes with alternating colours.

Question: Is this graph bipartite?

Tutorial Activity: Write pseudocode for a function check_bipartite to check whether a graph is bipartite!

Theorem

A graph is bipartite iff it has no odd cycles.

Has an odd cycle.

No odd cycles.

Theorem

A graph is bipartite iff it has no odd cycles.

Has an odd cycle.

No odd cycles.

Proof:

Theorem

A graph is bipartite iff it has no odd cycles.

Proof:

Theorem

A graph is bipartite iff it has no odd cycles.

Proof:

 (\Rightarrow) We prove the contrapositive. Suppose our graph has an odd cycle. We want to show it is not bipartite.

Theorem

A graph is bipartite iff it has no odd cycles.

Proof:

 (\Rightarrow) We prove the contrapositive. Suppose our graph has an odd cycle. We want to show it is not bipartite.

Theorem

A graph is bipartite iff it has no odd cycles.

Proof:

 (\Rightarrow) We prove the contrapositive. Suppose our graph has an odd cycle. We want to show it is not bipartite.

Theorem

A graph is bipartite iff it has no odd cycles.

Proof:

 (\Rightarrow) We prove the contrapositive. Suppose our graph has an odd cycle. We want to show it is not bipartite.

Theorem

A graph is bipartite iff it has no odd cycles.

Proof:

 (\Rightarrow) We prove the contrapositive. Suppose our graph has an odd cycle. We want to show it is not bipartite.

Theorem

A graph is bipartite iff it has no odd cycles.

Proof:

 (\Rightarrow) We prove the contrapositive. Suppose our graph has an odd cycle. We want to show it is not bipartite.

Theorem

A graph is bipartite iff it has no odd cycles.

Proof:

 (\Rightarrow) We prove the contrapositive. Suppose our graph has an odd cycle. We want to show it is not bipartite.

Theorem

A graph is bipartite iff it has no odd cycles.

Proof: (\Leftarrow) Suppose our graph has no odd cycles.

Theorem

A graph is bipartite iff it has no odd cycles.

Proof:
(⇐) Suppose our graph has no odd cycles.
Question: What algorithm can we use to partition the vertices?

Theorem

A graph is bipartite iff it has no odd cycles.

Proof: (⇐) Suppose our graph has no odd cycles. Question: What algorithm can we use to partition the vertices? Answer: check_bipartite!

check_bipartite can only fail when our graph has an odd cycle.

We found a cycle! This cycle must have odd length (otherwise there wouldn't be a conflict).

Fun Facts about Insects

Fun Facts about Insects

 Some insect species use an XO sex-determination system: males have only one X chromosome (referred to as XO), while females have two X chromosomes (XX).

Fun Facts about Insects

- Some insect species use an XO sex-determination system: males have only one X chromosome (referred to as XO), while females have two X chromosomes (XX).
- * Some insects, especially butterflies, can exhibit *Gynandromorphism*: having both male and female characteristics.

