
CSC363 Tutorial 9
What am I even doing anymore ;-;

Paul “sushi enjoyer” Zhang

University of Chux

March 17, 2021

1 / 25

Learning objectives this tutorial

By the end of this tutorial, you should...
Be able to convert formulas into conjunctive normal form (CNF), cuz
we need it to understand 3SAT or something.
Have a brief idea of what NP-completeness is, and be convinced that
you shouldn’t try to solve NP-complete problems in polynomial time.
Have the truth tables haunt you in your dreams.
Rejoice! because, uh, you’ll only be scared by helo fish.jpg for
only two more weeks?
Feel uneasy, if you’ve are taking CSC258 right now...

(helo fish.jpg is taking a break this week due to oceanic acidification.)
Big Chux certified readings: 7.4, probably, in Sipser’s book.

2 / 25

D:

so uh, i hope youse like formulas and logic! phl245 gang (even though
i havent even taken it before)

3 / 25

formula

(You’ll see the motivation for this section later! it relates to the 3SAT
problem)

Task: Write out your favourite formula, preferably in LATEX, in the chat.
My favourite formula is

|pD(n)− rD(n)| ≤ 1
nc .

4 / 25

formula

uh, today we’re gonna talk about a different type of formula, probably ;-;
we’re talking about boolean formulas!1

Definition: a boolean formula (or formula) is any valid expression
involving a bunch of “boolean variables” and the operations
¬,∧,∨,⇒,⇔, and brackets. 2

Task: Which of the following are (in your opinion) boolean formulas?
(a) x1 = x2.
(b) (x ⇒ y)⇔ ¬(y ∧ z).
(c) ((x ∧ y)⇒ (x).
(d) ⇒ ⇒ ⇒ .
Answer: only (b) is a formula.

1idk if the plural of formula is “formulas” or “formulae”, not gonna take any sides
here.

2It’s kinda an informal definition, but we’ll just work with it for now. please accept it.
5 / 25

formula

uh, today we’re gonna talk about a different type of formula, probably ;-;
we’re talking about boolean formulas!1

Definition: a boolean formula (or formula) is any valid expression
involving a bunch of “boolean variables” and the operations
¬,∧,∨,⇒,⇔, and brackets. 2

Task: Which of the following are (in your opinion) boolean formulas?
(a) x1 = x2.
(b) (x ⇒ y)⇔ ¬(y ∧ z).
(c) ((x ∧ y)⇒ (x).
(d) ⇒ ⇒ ⇒ .
Answer: only (b) is a formula.

1idk if the plural of formula is “formulas” or “formulae”, not gonna take any sides
here.

2It’s kinda an informal definition, but we’ll just work with it for now. please accept it.
5 / 25

formula

Do you remember truth tables?

Given a formula, we can fill out its truth table!
Let us write out the truth table for (x ⇒ y)⇔ ¬(y ∧ z)!

6 / 25

formula

Task: Fill in the following truth table for (x ⇒ y)⇔ ¬(y ∧ z).

x y z (x ⇒ y)⇔ ¬(y ∧ z)
T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

7 / 25

formula
x y z (x ⇒ y)⇔ ¬(y ∧ z)
T T T F
T T F T
T F T F
T F F F
F T T F
F T F T
F F T T
F F F T

Today’s tutorial is sponsored by larry.png. get 60% off your term test
grade with code MAXTERM today. Click the link in the description below.

8 / 25

formula
x y z (x ⇒ y)⇔ ¬(y ∧ z)
T T T F
T T F T
T F T F
T F F F
F T T F
F T F T
F F T T
F F F T

Anyway, this truth table allows us to turn (x ⇒ y)⇔ ¬(y ∧ z) into an
equivalent statement written in what’s called a conjunctive normal form
(CNF). So (x ⇒ y)⇔ ¬(y ∧ z) is logically equivalent to the following,
which is in CNF:

(¬x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (x ∨ ¬x ∨ ¬z).

9 / 25

formula

More formally, a clause is several variables connected with ∨s with, so
something like (x ∨ ¬y ∨ ¬z) is a clause. A formula is in conjunctive
normal form (CNF) if it comprises several clauses connected with ∧s, as
in

(¬x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (x ∨ ¬x ∨ ¬z).

10 / 25

formula
x y z (x ⇒ y)⇔ ¬(y ∧ z)
T T T F
T T F T
T F T F
T F F F
F T T F
F T F T
F F T T
F F F T

How to write out the CNF for a formula?
(1) Fill out the truth table for the formula.
(2) For each row which ends in ‘F’, take the value of the variables coming

before it, and negate them. Then add ∨ between them to create a
clause. For example, for the third row in our table, we create the
expression (¬x ∨ y ∨ ¬z).

(3) Take all the clauses you’ve made and add ∧ between them.
11 / 25

formula

Task: Write out the CNF for the formula (x ⇔ (y ⇒ z)) ∨ ¬y .

x y z (x ⇔ (y ⇒ z)) ∨ ¬y
T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

12 / 25

formula

Task: Write out the CNF for the formula (x ⇔ (y ⇒ z)) ∨ ¬y .

x y z (x ⇔ (y ⇒ z)) ∨ ¬y
T T T T
T T F F
T F T T
T F F T
F T T F
F T F T
F F T T
F F F T

So the CNF should be (¬x ∨ ¬y ∨ z) ∧ (x ∨ ¬y ∨ ¬z).

13 / 25

are you satisfied
Now we introduce the 3SAT problem. Say you are given a formula in
CNF, but in each bracketed term there must be exactly 3 variables. So

(x ⇔ (y ⇒ z)) ∨ ¬y doesn’t work, cuz it’s not in CNF.
(x ∧ y ∧ ¬z) ∨ (¬x ∧ ¬y ∧ ¬z) doesn’t work, cuz it’s not in CNF.
(x ∨ y ∨ z) ∧ (y ∨ z) doesn’t work, cuz it doesn’t have exactly 3
variables in each bracket.
(x ∨ ¬y ∨ x) ∧ (¬x ∨ z ∨ ¬w) works! (you could have more than 3
variables in the whole expression, and you may repeat variables).

So you’re given this CNF formula,3 and you’re asked the following
question: can you assign truth values to all the variables so that the CNF
formula is true?

In the example (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ z ∨ ¬w), the answer is yes, since if
we assign x , z to be true and y , w to be false, then
(x ∨ ¬y ∨ ¬z) ∧ (x ∨ z ∨ ¬w) is true.

3it’s in fact called a 3CNF formula!
14 / 25

are you satisfied

So you’re given this CNF formula,4 and you’re asked the following
question: can you assign truth values to all the variables so that the CNF
formula is true?

In the example

(x ∨ y ∨ z) ∧ (x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ z) ∧ (x ∨ ¬y ∨ ¬z)
∧(¬x ∨ y ∨ z) ∧ (¬x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z)

there is no assignment of variables that makes this true!

4it’s in fact called a 3CNF formula!
15 / 25

are you satisfied

Turns out, uh, 3SAT5 is what is called a NP-complete problem.
Definition: A language A is NP-complete if
(a) A ∈ NP;
(b) For every B ∈ NP, B ≤p A.
The above is saying that A is the “hardest NP problem”. If we can solve A
in poly-time, then we can solve every NP problem in poly-time, effectively
proving P = NP.

Theorem: 3SAT is NP-complete.
Proof: sorry it’s too long and i don’t understand it either ;-; it’s in the
book tho!

5As a language, 3SAT is defined as {ϕ : ϕ is a 3CNF formula that can be satisfied}.
16 / 25

np-complete
3SAT is not the only NP-complete problem though! There’s a whole
plethora of them. They are all the hardest problems in NP. If you can solve
any one of them in poly-time, then all of them can be solved in poly-time.

List of NP-complete problems
17 / 25

np-complete

Basically, if you manage to prove a problem is NP-complete, you shouldn’t
try to solve it in polynoimal time! If your boss asks you to give a
poly-time solution to a NP-complete problem, I’d probably switch
employers... cuz that would pretty much amount to proving P = NP,
which is really hard! (and if you do manage to prove it, might as well just
walk away with the million dollars)

We’ll now prove explain that the vertex cover problem is also NP-complete.
If you’ve been in csc373, rejoice! (if you even remember this lol)

18 / 25

cover me owo
Let’s say you’re given an undirected graph G . something like

A vertex-cover for G is a set of vertices V in G such that every edge in
G touches at least one vertex in V . In the graph on the left below, the red
vertices form a vertex cover; in the graph on the right, the red vertices
don’t form a vertex cover.

The size of a vertex cover is the number of vertices in our vertex cover.
The size of the vertex cover on the left graph is 4. (In fact this is the
minimum vertex cover size for our graph!)

19 / 25

cover me owo

Task: Find a vertex cover for the following graph G (it has four
disconnected components). What is the size of the covering? Can you
make it smaller?

20 / 25

cover me owo
Task: Find a vertex cover for the following graph G (it has four
disconnected components). What is the size of the covering? Can you
make it smaller?

(size 6)

20 / 25

cover me owo
The vertex cover problem gives you an arbitrary undirected graph G and
an integer k, and asks you if there is a vertex cover of size k. We can
think of this as the language

VC = {(G , k) : G is a graph with a vertex cover of size k}.
Turns out this language is NP-complete! We’ll prove it, which involves
showing two things:

VC ∈ NP;
A ≤p VC for all languages A ∈ NP.

The first one is quick to prove: you can build a poly-time verifier V :6

V (G , k, S) : Check if S is a vertex cover of G
Check if S has size k
Accept iff both conditions are satisfied.

6Recall (from last tutorial) that a language is in NP iff it has a poly-time verifier. A
verifier for a language A is a TM V such that

A = {s : there is a string c such that V (s, c) accepts}. 21 / 25

cover me owo
The vertex cover problem gives you an arbitrary undirected graph G and
an integer k, and asks you if there is a vertex cover of size k. We can
think of this as the language

VC = {(G , k) : G is a graph with a vertex cover of size k}.
Turns out this language is NP-complete! We’ll prove it, which involves
showing two things:

VC ∈ NP;
A ≤p VC for all languages A ∈ NP.

The first one is quick to prove: you can build a poly-time verifier V :7

V (G , k, S) : Check if S is a vertex cover of V
Check if S has size k
Accept iff both conditions are satisfied.

7Recall (from last tutorial) that a language is in NP iff it has a poly-time verifier. A
verifier for a language A is a TM V such that

A = {s : there is a string c such that V (s, c) accepts}. 22 / 25

cover me owo

We now prove A ≤p VC for any language A ∈ NP. In fact, it is sufficient
to show 3SAT ≤p VC: since we know 3SAT is NP-complete, every A ∈ NP
satisfies A ≤p 3SAT; if 3SAT ≤p VC then by transitivity A ≤p VC as well!

From now on this is how we will prove that something is NP-complete:
just show some already known NP-complete problem reduces to it.

To show 3SAT ≤P VC, we show that if we can solve VC in poly-time, then
we can solve 3SAT in poly-time as well.

23 / 25

3SAT ≤P VC

Suppose we can solve VC in poly-time. Given a 3CNF formula ϕ, we will
construct a graph G as follows:

(uh, i’m probably just gonna narrate the rest of this! if you’re just reading
those slides, it’s in Sipser’s book on pg261)

24 / 25

bye! D: and hope today’s tutorial8 wasn’t too flushed out.

8probably more like a lecture disguised as a review session.
25 / 25

