Introduction

Definition [3SAT]. We say a formula φ is in *conjunctive normal form*, or φ is a cnf-formula, if it can be written as a conjunction (\wedge) of *clauses*, and each clause is a disjunction (\vee) of literals (either a variable x_i or its negation $\neg x_i$).

$$\varphi = \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_i} f_{ij} \right) = (f_{11} \vee \cdots \vee f_{1k_1}) \wedge \cdots \wedge (f_{n1} \vee \cdots \vee f_{nk_n}).$$

A 3cnf-formula is a cnf-formula such that each clause has exactly three literals. For example:

$$(x_1 \lor x_3 \lor \neg x_2) \land (x_1 \lor \neg x_1 \lor x_4) \land (\neg x_5 \lor \neg x_2 \lor \neg x_7)$$
 is a 3cnf-formula.
 $(x_1 \lor x_3 \lor \neg x_2) \land (x_1)$ and $\neg (x_4 \land x_1 \lor x_3) \land (x_1 \lor \neg x_1 \land x_4)$ are not 3cnf-formulas.

Finally, we can define:

 $3SAT = \{\langle \varphi \rangle : \varphi \text{ is a satisfiable 3cnf-formula} \} \subseteq SAT.$

The following theorem is striking, since it shows that increasing the *vertical complexity* of a formula does not necessarily allow it to be more expressive.

Theorem. 3SAT is NP-complete.

If this theorem feels "obvious", then it may be more surprising that 2SAT is not even NP-complete! This indicates that there is a *fundamental difference in the difficulty* of solving cnf-formulas with clauses of size at most 2, and cnf-formulas with clauses of size at least 3.

Part 1.

In this tutorial, we will study the problem VERTEX-COVER, and eventually prove that it is NP-complete. VERTEX-COVER is phrased as follows: Given a graph G and $k \in \mathbb{N}$, does there exist a set of k vertices v_1, \ldots, v_k in G, such that every edge in G is incident with at least one of the v_i 's? If so, we say that $\{v_1, \ldots, v_k\}$ is a k-(vertex) cover of G.

 $\mathsf{VERTEX}\text{-}\mathsf{COVER} = \{ \langle G, k \rangle : G \text{ has a } k\text{-}\mathsf{cover} \}$

Exercise 1. Try to find a 3-cover of the following graph:

Exercise 2. Reason that VERTEX-COVER \in NP using one of the following two methods:

- 1. Show that there is a polynomial time verifier $V(\langle G, k \rangle, c)$ for VERTEX-COVER. *Hint: the input c codes a "solution" to the problem; the format of c depends on the definition of V and should be chosen by you.* What counts as evidence that G has a k-cover?
- 2. Show that there is a polynomial time NTM $T(\langle G, k \rangle)$ that decides VERTEX-COVER. *Hint: at some point in its computation, T will have to nondeterministically guess a property of G, and later it should deterministically check that the guess was a correct one.*

Part 2

We now show that VERTEX-COVER is NP-hard, hence proving that it is NP-complete. As a sanity check, recall that it suffices to show

$3SAT \leq_P VERTEX-COVER.$

In other words, given any 3cnf-formula $\varphi(x_1, \ldots, x_n) = \varphi_1(\vec{x}) \wedge \cdots \wedge \varphi_\ell(\vec{x})$, we will construct in polynomial time (of $|\varphi|$) a graph $\Gamma \varphi$ and an integer k, such that $\Gamma \varphi$ has a k-clique iff φ is satisfiable.

Let $\Gamma \varphi$ be the graph constructed by the following steps:

1. For each variable x_i in φ , $\Gamma \varphi$ will have the subgraph

 $x_i - \neg x_i$

2. For each clause $\varphi_j = (y_j \lor z_j \lor w_j)$, where, for example, y_j is a literal of the form x_i or $\neg x_i$ for some i, $\Gamma \varphi$ will have the subgraph

3. Finally, connect each literal y_j , z_j , w_j to the corresponding variable in part 1, respecting negation.

For example, the formula $\varphi(x_1, x_2) = (x_1 \vee \neg x_2 \vee x_1) \wedge (\neg x_2 \vee \neg x_1 \vee x_2)$ will have the graph $\Gamma \varphi$ given by

Exercise 3. Practice constructing the following graph:

$$\Gamma((x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_2 \lor \neg x_1 \lor x_1) \land (x_3 \lor x_2 \lor x_1))$$

Exercise 4. Suppose φ is satisfiable, meaning we have an assignment $f : \{x_1, \ldots, x_n\} \to \{0, 1\}$. We construct a cover C of $\Gamma \varphi$ as follows:

- 1. C will contain exactly one of x_i and $\neg x_i$ corresponding to whether $f(x_i)$ equals 1 or 0, respectively.
- 2. Since each clause $\varphi_j = (y_j \lor z_j \lor w_j)$ is satisfied, then at least one of the literals of φ_j equals 1. Let C contain the vertices corresponding to the other two literals.

Using the solution $f(x_1) = 1$, $f(x_2) = 0$, $f(x_3) = 0$ for φ in exercise 3, find the cover C.

Exercise 5. Prove in general that C is a *k*-cover for $\Gamma \varphi$, where $k = n + 2\ell$, *n* is the number of variables, and ℓ is the number of clauses.

Exercise 6. Now work backwards: if $\Gamma \varphi$ has a *k*-cover C, where $k = n + 2\ell$, prove that φ is satisfiable. *Hint: first, reason that at least one vertex from each pair* x_i , $\neg x_i$ *is in* C*, and similarly that* C *must contain vertices corresponding to at least two literals from each clause. Finally, conclude that this choice of vertices actually represents a solution to* φ .