Tutorial 10: NP-Completeness II CSC363H5 Winter 2023

Introduction

Definition [3SAT]. We say a formula ¢ is in conjunctive normal form, or ¢ is a cnf-formula, if it can be
written as a conjunction (A) of clauses, and each clause is a disjunction (V) of literals (either a variable
x; or its negation —z;).

n k;
e= NV i =0V Vi) A A VeV far,)
i=1 \j=1

A 3cnf-formula is a ecnf-formula such that each clause has exactly three literals. For example:

(1 VsV x) A (1 V -z Vag) A(mxs V —xe V —xy) is a 3enf-formula.
(1 Vg Vxa) A (z1) and —(z4 A 21 V 23) A (21 V 221 A 24) are not 3enf-formulas.

Finally, we can define:
3SAT = {(¢) : ¢ is a satisfiable 3cnf-formula} C SAT.

The following theorem is striking, since it shows that increasing the vertical complexity of a formula does
not necessarily allow it to be more expressive.

Theorem. 3SAT is NP-complete.

If this theorem feels “obvious”, then it may be more surprising that 2SAT is not even NP-complete! This
indicates that there is a fundamental difference in the difficulty of solving cnf-formulas with clauses of size
at most 2, and cnf-formulas with clauses of size at least 3.

Part 1.

In this tutorial, we will study the problem VERTEX-COVER, and eventually prove that it is NP-complete.
VERTEX-COVER is phrased as follows: Given a graph G and k € N, does there exist a set of k vertices
v1,...,U, in G, such that every edge in G is incident with at least one of the v;’s? If so, we say that
{v1,...,vx} is a k-(vertex) cover of G.

VERTEX-COVER = {(G, k) : G has a k-cover}

Exercise 1. Try to find a 3-cover of the following graph:

Exercise 2. Reason that VERTEX-COVER € NP using one of the following two methods:

1. Show that there is a polynomial time verifier V ((G, k), ¢) for VERTEX-COVER. Hint: the input c
codes a “solution” to the problem; the format of c depends on the definition of V' and should be chosen by you.
What counts as evidence that G has a k-cover?

2. Show that there is a polynomial time NTM T'((G, k)) that decides VERTEX-COVER. Hint: at some
point in its computation, T will have to nondeterministically guess a property of G, and later it should
deterministically check that the guess was a correct one.

Part 2

We now show that VERTEX-COVER is NP-hard, hence proving that it is NP-complete. As a sanity check,
recall that it suffices to show

3SAT <p VERTEX-COVER.

In other words, given any 3cnf-formula p(z1, ..., 2,) = @1(Z) A -+ - A pe(Z), we will construct in polyno-
mial time (of |¢|) a graph I'p and an integer k, such that I'y has a k-clique iff ¢ is satisfiable.

Let I'p be the graph constructed by the following steps:
1

Tutorial 10: NP-Completeness II CSC363H5 Winter 2023

1. For each variable z; in ¢, I'py will have the subgraph

xZ; Ty

2. For each clause ¢, = (y; V z; Vw;), where, for example, y; is a literal of the form z; or -z, for some
i, ' will have the subgraph

3. Finally, connect each literal y;, z;, w; to the corresponding variable in part 1, respecting negation.

For example, the formula (z1, x2) = (21 V 22 V1) A (m22 V 21 V 22) Will have the graph I'g given by

x Ty T2 - X2
AN TN
! \\ =7 -7 \:\\
Ty —X— T2 T2 T
\\ \\
\ N
\ \
\ N
N N
x T2

Exercise 3. Practice constructing the following graph:
T((z1 V —xe V —xg) A (mxa Voxyp Vag) A(zz Vg V)

Exercise 4. Suppose ¢ is satisfiable, meaning we have an assignment f : {z1,...,z,} — {0,1}. We
construct a cover C of I'p as follows:

1. C will contain exactly one of z; and —z; corresponding to whether f(z;) equals 1 or 0, respectively.

2. Since each clause ; = (y; V z; V w;) is satisfied, then at least one of the literals of ¢; equals 1. Let
C contain the vertices corresponding to the other two literals.

Using the solution f(z1) = 1, f(z2) = 0, f(z3) = 0 for ¢ in exercise 3, find the cover C.

Exercise 5. Prove in general that C is a k-cover for I'p, where k = n + 2¢, n is the number of variables,
and ¢ is the number of clauses.

Exercise 6. Now work backwards: if I'p has a k-cover C, where k = n + 2¢, prove that ¢ is satisfiable.
Hint: first, reason that at least one vertex from each pair x;, —~x; is in C, and similarly that C must contain ver-
tices corresponding to at least two literals from each clause. Finally, conclude that this choice of vertices actually
represents a solution to .

