CSC363 Tutorial #2 Primitive Recursive Functions

January 25, 2023

▶ What's a "function"?

- ▶ What's a "function"?
- What are the primitive recursive functions?

- ▶ What's a "function"?
- What are the primitive recursive functions?
- ▶ How can I use composition and primitive recursion?

- What's a "function"?
- What are the primitive recursive functions?
- How can I use composition and primitive recursion?
- Could I get a hint for A1 Q3?

- ▶ What's a "function"?
- What are the primitive recursive functions?
- ▶ How can I use composition and primitive recursion?
- Could I get a hint for A1 Q3? No, but you may cite these slides for your homework. (You still have to provide a formal proof that the functions in this tutorial are PRIM.)¹

¹Citation: Paul "sjorv" Zhang. "CSC363 Tutorial #2. Primitive Recursive Functions. Five the primitive recursive scheme among us vr.". Chungus Publishing, 2023.

What's a function?

What's a function?

In the previous tutorial (Turing machines), functions were from Σ^* to Σ^* .

- In the previous tutorial (Turing machines), functions were from Σ^* to Σ^* . computer science!!1!!
- In this tutorial, all functions are from \mathbb{N} to \mathbb{N} (or from \mathbb{N}^k to \mathbb{N}).

- In the previous tutorial (Turing machines), functions were from Σ^* to Σ^* . computer science!!1!!
- In this tutorial, all functions are from \mathbb{N} to \mathbb{N} (or from \mathbb{N}^k to \mathbb{N}). (\mathbb{N} includes 0 in this course.)

The primitive recursive functions (PRIM) are a collection of functions $f : \mathbb{N}^k \to \mathbb{N}$ defined using structural recursion.

The primitive recursive functions (PRIM) are a collection of functions $f : \mathbb{N}^k \to \mathbb{N}$ defined using structural recursion.

The primitive recursive functions (PRIM) are a collection of functions $f : \mathbb{N}^k \to \mathbb{N}$ defined using structural recursion.

Rules:

1. The following initial functions are in PRIM:

The primitive recursive functions (PRIM) are a collection of functions $f : \mathbb{N}^k \to \mathbb{N}$ defined using structural recursion.

- 1. The following initial functions are in PRIM:
 - ▶ The zero function $Z : \mathbb{N} \to \mathbb{N}$, Z(n) = 0.

The primitive recursive functions (PRIM) are a collection of functions $f : \mathbb{N}^k \to \mathbb{N}$ defined using structural recursion.

- 1. The following initial functions are in PRIM:
 - ▶ The zero function $Z : \mathbb{N} \to \mathbb{N}$, Z(n) = 0.
 - ▶ The successor function $S : \mathbb{N} \to \mathbb{N}$, S(n) = n + 1.

The primitive recursive functions (PRIM) are a collection of functions $f : \mathbb{N}^k \to \mathbb{N}$ defined using structural recursion.

- 1. The following initial functions are in PRIM:
 - ▶ The zero function $Z : \mathbb{N} \to \mathbb{N}$, Z(n) = 0.
 - ▶ The successor function $S : \mathbb{N} \to \mathbb{N}$, S(n) = n + 1.
 - ▶ For each $k \in \mathbb{N}$ and i = 1, ..., k, the projection function $C_i^k : \mathbb{N}^k \to \mathbb{N}$, $C_i^k(n_1, n_2, ..., n_k) = n_i^2$.

²In other words, $\overline{C_i^k}$ takes in k arguments, and returns the *i*th one.

The primitive recursive functions (PRIM) are a collection of functions $f : \mathbb{N}^k \to \mathbb{N}$ defined using structural recursion.

Rules:

2. The following structural recursion rules:

The primitive recursive functions (PRIM) are a collection of functions $f : \mathbb{N}^k \to \mathbb{N}$ defined using structural recursion.

Rules:

- 2. The following structural recursion rules:
 - ▶ Composition: If $g : \mathbb{N}^k \to \mathbb{N}$ and $h_1, h_2, \ldots, h_k : \mathbb{N}^\ell \to \mathbb{N}$ are in PRIM, then $f : \mathbb{N}^\ell \to \mathbb{N}$ given by³

$$f(\vec{m}) = g(h_1(\vec{m}), \ldots, h_k(\vec{m}))$$

is primitive recursive.

The primitive recursive functions (PRIM) are a collection of functions $f : \mathbb{N}^k \to \mathbb{N}$ defined using structural recursion.

Rules:

- 2. The following structural recursion rules:
 - ▶ Composition: If $g : \mathbb{N}^k \to \mathbb{N}$ and $h_1, h_2, \ldots, h_k : \mathbb{N}^\ell \to \mathbb{N}$ are in PRIM, then $f : \mathbb{N}^\ell \to \mathbb{N}$ given by³

$$f(\vec{m}) = g(h_1(\vec{m}), \ldots, h_k(\vec{m}))$$

is primitive recursive. In other words, you can compose primitive recursive functions.

The primitive recursive functions (PRIM) are a collection of functions $f : \mathbb{N}^k \to \mathbb{N}$ defined using structural recursion.

Rules:

- 2. The following structural recursion rules:
 - ▶ Composition: If $g : \mathbb{N}^k \to \mathbb{N}$ and $h_1, h_2, \ldots, h_k : \mathbb{N}^\ell \to \mathbb{N}$ are in PRIM, then $f : \mathbb{N}^\ell \to \mathbb{N}$ given by³

$$f(\vec{m}) = g(h_1(\vec{m}), \ldots, h_k(\vec{m}))$$

is primitive recursive. In other words, you can compose primitive recursive functions.

Primitive Recursion: If $g : \mathbb{N}^{\ell} \to \mathbb{N}$ and $h : \mathbb{N}^{\ell+2} \to \mathbb{N}$ are in PRIM, then $f : \mathbb{N}^{\ell+1} \to \mathbb{N}$ given by

$$f(\vec{m}, 0) = g(\vec{m})$$

 $f(\vec{m}, n + 1) = h(\vec{m}, n, f(\vec{m}, n))$

is primitive recursive.

 ${}^{3}\vec{m} \in \mathbb{N}^{\ell}.$

Primitive Recursion

Primitive Recursion: If $g : \mathbb{N}^{\ell} \to \mathbb{N}$ and $h : \mathbb{N}^{\ell+2} \to \mathbb{N}$ are in PRIM, then $f : \mathbb{N}^{\ell+1} \to \mathbb{N}$ given by

$$f(\vec{m}, 0) = g(\vec{m})$$

 $f(\vec{m}, n + 1) = h(\vec{m}, n, f(\vec{m}, n))$

is primitive recursive.

Primitive Recursion

Primitive Recursion: If $g : \mathbb{N}^{\ell} \to \mathbb{N}$ and $h : \mathbb{N}^{\ell+2} \to \mathbb{N}$ are in PRIM, then $f : \mathbb{N}^{\ell+1} \to \mathbb{N}$ given by

$$f(\vec{m}, 0) = g(\vec{m})$$

 $f(\vec{m}, n + 1) = h(\vec{m}, n, f(\vec{m}, n))$

is primitive recursive.

In other words, you can use for-loops.

Primitive Recursion

Primitive Recursion: If $g : \mathbb{N}^{\ell} \to \mathbb{N}$ and $h : \mathbb{N}^{\ell+2} \to \mathbb{N}$ are in PRIM, then $f : \mathbb{N}^{\ell+1} \to \mathbb{N}$ given by

$$f(\vec{m}, 0) = g(\vec{m})$$

 $f(\vec{m}, n + 1) = h(\vec{m}, n, f(\vec{m}, n))$

is primitive recursive.

In other words, you can use for-loops.

```
f(m, n):
  curr = g(m)
  for i in 1..n:
    curr = h(m, i-1, curr)
  return curr
```

This is very powerful!

Addition is in PRIM

The function $+ : \mathbb{N}^2 \to \mathbb{N}$, f(m, n) = m + n is in PRIM, due to primitive recursion:

```
+(m, n):
    curr = C^1_1(m)
    for i in 1..n:
        curr = S(C^3_3(m, i-1, curr))
    return curr
```

⁴Unfortunately, we have to put some PRIM function in place of g, according to template...

Addition is in PRIM

The function $+ : \mathbb{N}^2 \to \mathbb{N}$, f(m, n) = m + n is in PRIM, due to primitive recursion:

Explanation:

- C_1^1 is the identity function: $C_1^1(m) = m$.
- curr = S(C^3_3(m, i-1, curr)) adds 1 to curr:

$$C_3^3(m, i-1, \mathtt{curr}) = \mathtt{curr}$$

$$S(\texttt{curr}) = \texttt{curr} + 1$$

⁴Unfortunately, we have to put some PRIM function in place of g, according to template...

Addition is in PRIM

The function $+ : \mathbb{N}^2 \to \mathbb{N}$, f(m, n) = m + n is in PRIM, due to primitive recursion:

```
+(m, n):
    curr = C^1_1(m)
    for i in 1..n:
        curr = S(C^3_3(m, i-1, curr))
    return curr
```

Formally,

$$+(m,0) = C_1^1(\vec{m}) +(m,n+1) = S(C_3^3(m,n,+(m,n))).$$

Multiplication is in PRIM

Your turn! Show that the function $f : \mathbb{N}^2 \to \mathbb{N}$, $f(m, n) = m \cdot n$ is in PRIM.

Multiplication is in PRIM

Your turn! Show that the function $f : \mathbb{N}^2 \to \mathbb{N}$, $f(m, n) = m \cdot n$ is in PRIM. Here's the template for primitive recursion again:

```
f(m, n):
  curr = g(m)
  for i in 1..n:
    curr = h(m, i-1, curr)
  return curr
```

Hint: You know that the addition function $+ : \mathbb{N}^2 \to \mathbb{N}$, +(m, n) = m + n is in PRIM now.

If you're finished, try showing $f : \mathbb{N}^2 \to \mathbb{N}$, $f(m, n) = m^n$ is in PRIM too.

More PRIM functions! Show that $f : \mathbb{N}^2 \to \mathbb{N}$, f(m, n) = m - n is in PRIM.

Show that $f: \mathbb{N}^2 \to \mathbb{N}$, f(m, n) = m - n is in PRIM.

Unfortunately, the above function is not $\mathbb{N}\to\mathbb{N}.$ You can't output negative numbers!

Show that $f : \mathbb{N}^2 \to \mathbb{N}$, f(m, n) = m - n is in PRIM.

Unfortunately, the above function is not $\mathbb{N}\to\mathbb{N}.$ You can't output negative numbers!

Try this instead. Task: Show that the "try to subtract 1" function

$$\delta:\mathbb{N} o\mathbb{N},\delta(m)=egin{cases}m-1&m>0\0&m=0\end{cases}$$

is in PRIM.

Show that $f : \mathbb{N}^2 \to \mathbb{N}$, f(m, n) = m - n is in PRIM.

Unfortunately, the above function is not $\mathbb{N}\to\mathbb{N}.$ You can't output negative numbers!

Try this instead. Task: Show that the "try to subtract 1" function

$$\delta:\mathbb{N} o\mathbb{N},\delta(m)=egin{cases}m-1&m>0\0&m=0\end{cases}$$

is in PRIM.

Hint 1: Try to prove $f : \mathbb{N}^2 \to \mathbb{N}$, $f(m, n) = \delta(n)$ is in PRIM.

```
f(m, n):
  curr = g(m)
  for i in 1..n:
    curr = h(m, i-1, curr)
  return curr
```

Hint 2: In the above, h won't need the value of m or curr.

Task: Show that the "try to subtract" function

$$\dot{-}: \mathbb{N}^2 \to \mathbb{N}, \dot{-}(m, n) = \begin{cases} m-n & m \ge n \\ 0 & m < n \end{cases}$$

is in PRIM.

Task: Show that the "try to subtract" function

$$\dot{-}: \mathbb{N}^2 \to \mathbb{N}, \dot{-}(m, n) = \begin{cases} m-n & m \ge n \\ 0 & m < n \end{cases}$$

is in PRIM.

```
f(m, n):
  curr = g(m)
  for i in 1..n:
    curr = h(m, i-1, curr)
  return curr
```

Hint: Use the "try to subtract 1" function δ .

Task: Show that the "is greater than zero?" function

$$\mathrm{sg}:\mathbb{N} o\mathbb{N},\mathrm{sg}(n)=egin{cases} 0&n=0\ 1&n>0 \end{cases}$$

is in PRIM.

```
f(m, n):
  curr = g(m)
  for i in 1..n:
    curr = h(m, i-1, curr)
  return curr
```

Task: Show that the "is equal than zero?" function

$$\overline{\mathrm{sg}}:\mathbb{N} o\mathbb{N},\overline{\mathrm{sg}}(n)=egin{cases} 1&n=0\ 0&n>0 \end{cases}$$

is in PRIM.

Hint: You could do this using primitive recursion, but a shorter solution would be to use ${\rm sg.}$

We've shown that the following functions are in PRIM:

▶ +,

We've shown that the following functions are in PRIM:

► +, ► ·,

- ▶ +,
- ► ·,
- Exponentiation,

- ▶ +,
- ► ·,
- Exponentiation,
- Νδ,

- ▶ +,
- ► ·,
- Exponentiation,
- ► δ,

- ▶ +,
- ► ·,
- Exponentiation,
- ► δ,
- ► -
- \blacktriangleright sg, \overline{sg} .

- ▶ +,
- ► ·,
- Exponentiation,
- ► δ,
- ► -
- \blacktriangleright sg, \overline{sg} .

We've shown that the following functions are in PRIM:

+,
 ·,
 Exponentiation,
 δ,
 -,
 sg, sg.

Note that sg, \overline{sg} allow you to use "if-statements".

Nope. Some functions, such as the Ackermann Function, are not in PRIM unfortunately.

Nope. Some functions, such as the Ackermann Function, are not in PRIM unfortunately.

```
Ackermann(m, n):
if m = 0:
    return n + 1
if n = 0:
    return Ackermann(m - 1, 1)
return Ackermann(m-1, Ackermann(m, n-1))
```

Nope. Some functions, such as the Ackermann Function, are not in PRIM unfortunately.

```
Ackermann(m, n):
if m = 0:
   return n + 1
if n = 0:
   return Ackermann(m - 1, 1)
```

return Ackermann(m-1, Ackermann(m, n-1))

m	0	1	2	3	4	п
0	1	2	3	4	5	n + 1
1	2	3	4	5	6	n+2=2+(n+3)-3
2	3	5	7	9	11	$2n+3=2\cdot(n+3)-3$
3	5	13	29	61	125	$2^{(n+3)} - 3$
4	13 $= 2^{2^2} - 3$ $= 2 \uparrow \uparrow 3 - 3$	$\begin{array}{l} 655533 \\ = 2^{2^{2^2}} - 3 \\ = 2 \uparrow \uparrow 4 - 3 \end{array}$	$2^{65536} - 3$ = $2^{2^{2^{2^2}}} - 3$ = $2 \uparrow \uparrow 5 - 3$	$\begin{array}{l} 2^{2^{2^{55535}}}-3\\ =2^{2^{2^{2^{2^{2}}}}}-3\\ =2\uparrow\uparrow 6-3 \end{array}$	$2^{2^{2^{60000}}} - 3$ = $2^{2^{2^{2^{2^{2^{2^{2^{-}}}}}}} - 3$ = $2 \uparrow \uparrow \uparrow 7 - 3$	$2^{2^{2^{n^2}}}_{n+3} - 3$ = 2 \phi \phi (n + 3) - 3
5	$\begin{array}{l} 65533\\ =2\uparrow\uparrow\left(2\uparrow\uparrow2\right)-3\\ =2\uparrow\uparrow\uparrow3-3 \end{array}$	$2\uparrow\uparrow\uparrow 4-3$	$2\uparrow\uparrow\uparrow 5-3$	$2\uparrow\uparrow\uparrow\uparrow 6-3$	$2\uparrow\uparrow\uparrow\uparrow 7-3$	$2\uparrow\uparrow\uparrow(n+3)-3$
6	$2\uparrow\uparrow\uparrow\uparrow\uparrow 3-3$	$2\uparrow\uparrow\uparrow\uparrow\uparrow 4-3$	$2\uparrow\uparrow\uparrow\uparrow\uparrow 5-3$	$2\uparrow\uparrow\uparrow\uparrow\uparrow 6-3$	$2\uparrow\uparrow\uparrow\uparrow\uparrow 7-3$	$2\uparrow\uparrow\uparrow\uparrow\uparrow(n+3)-3$
m	(2 ightarrow 3 ightarrow (m-2))-3	(2 ightarrow 4 ightarrow (m-2)) - 3	(2 ightarrow5 ightarrow(m-2))-3	(2 ightarrow 6 ightarrow (m-2))-3	(2 ightarrow 7 ightarrow (m-2))-3	(2 ightarrow(n+3) ightarrow(m-2))-3

It grows too quickly to be captured using for-loops.

Nope. Some functions, such as the Ackermann Function, are not in PRIM unfortunately.

Nope. Some functions, such as the Ackermann Function, are not in PRIM unfortunately.

```
Ackermann(m, n):
if m = 0:
    return n + 1
if n = 0:
    return Ackermann(m - 1, 1)
return Ackermann(m-1, Ackermann(m, n-1))
```

Nope. Some functions, such as the Ackermann Function, are not in PRIM unfortunately.

```
Ackermann(m, n):
if m = 0:
    return n + 1
if n = 0:
    return Ackermann(m - 1, 1)
return Ackermann(m-1, Ackermann(m, n-1))
```

Proof (hard!): show that the set of functions

 $\mathcal{A} = \{f : \exists t \in \mathbb{N}, \forall x_1, \dots, x_n \in \mathbb{N}, f(x_1, \dots, x_n) < \mathcal{A}(t, \max_i x_i)\}$

contains all PRIM functions, via structural induction.

Nope. Some functions, such as the Ackermann Function, are not in PRIM unfortunately.

```
Ackermann(m, n):
if m = 0:
    return n + 1
if n = 0:
    return Ackermann(m - 1, 1)
return Ackermann(m-1, Ackermann(m, n-1))
```

Proof (hard!): show that the set of functions

$$\mathcal{A} = \{f : \exists t \in \mathbb{N}, \forall x_1, \dots, x_n \in \mathbb{N}, f(x_1, \dots, x_n) < \mathcal{A}(t, \max_i x_i)\}$$

contains all PRIM functions, via structural induction. This shows that A(m, n) grows strictly faster than any PRIM function, and hence cannot be PRIM itself.

 $^{^5 {\}rm In}$ other words, you can't write a Turing machine (or equivalently a Python program) to compute the halting problem.

Nope.

 $^{^5 {\}rm In}$ other words, you can't write a Turing machine (or equivalently a Python program) to compute the halting problem.

Nope. Some other functions, such as the halting problem, are not even computable! $^{\rm 5}$

⁵In other words, you can't write a Turing machine (or equivalently a Python program) to compute the halting problem.

- Nope. Some other functions, such as the halting problem, are not even computable! $^{\rm 5}$
- To avoid spoiling content, I am legally required to not speak any further on the halting problem.

⁵In other words, you can't write a Turing machine (or equivalently a Python program) to compute the halting problem.