
CSC363 Tutorial #2
Primitive Recursive Functions

January 25, 2023
1 / 17



Things covered in this tutorial

▶ What’s a “function”?

▶ What are the primitive recursive functions?

▶ How can I use composition and primitive recursion?

▶ Could I get a hint for A1 Q3? No, but you may cite these slides for
your homework. (You still have to provide a formal proof that the
functions in this tutorial are PRIM.)1

1Citation: Paul “sjorv” Zhang. “CSC363 Tutorial #2. Primitive Recursive
Functions. Five the primitive recursive scheme among us vr.”. Chungus Publishing, 2023.

2 / 17



Things covered in this tutorial

▶ What’s a “function”?

▶ What are the primitive recursive functions?

▶ How can I use composition and primitive recursion?

▶ Could I get a hint for A1 Q3? No, but you may cite these slides for
your homework. (You still have to provide a formal proof that the
functions in this tutorial are PRIM.)1

1Citation: Paul “sjorv” Zhang. “CSC363 Tutorial #2. Primitive Recursive
Functions. Five the primitive recursive scheme among us vr.”. Chungus Publishing, 2023.

2 / 17



Things covered in this tutorial

▶ What’s a “function”?

▶ What are the primitive recursive functions?

▶ How can I use composition and primitive recursion?

▶ Could I get a hint for A1 Q3? No, but you may cite these slides for
your homework. (You still have to provide a formal proof that the
functions in this tutorial are PRIM.)1

1Citation: Paul “sjorv” Zhang. “CSC363 Tutorial #2. Primitive Recursive
Functions. Five the primitive recursive scheme among us vr.”. Chungus Publishing, 2023.

2 / 17



Things covered in this tutorial

▶ What’s a “function”?

▶ What are the primitive recursive functions?

▶ How can I use composition and primitive recursion?

▶ Could I get a hint for A1 Q3? No, but you may cite these slides for
your homework. (You still have to provide a formal proof that the
functions in this tutorial are PRIM.)1

1Citation: Paul “sjorv” Zhang. “CSC363 Tutorial #2. Primitive Recursive
Functions. Five the primitive recursive scheme among us vr.”. Chungus Publishing, 2023.

2 / 17



Things covered in this tutorial

▶ What’s a “function”?

▶ What are the primitive recursive functions?

▶ How can I use composition and primitive recursion?

▶ Could I get a hint for A1 Q3?

No, but you may cite these slides for
your homework. (You still have to provide a formal proof that the
functions in this tutorial are PRIM.)1

1Citation: Paul “sjorv” Zhang. “CSC363 Tutorial #2. Primitive Recursive
Functions. Five the primitive recursive scheme among us vr.”. Chungus Publishing, 2023.

2 / 17



Things covered in this tutorial

▶ What’s a “function”?

▶ What are the primitive recursive functions?

▶ How can I use composition and primitive recursion?

▶ Could I get a hint for A1 Q3? No, but you may cite these slides for
your homework. (You still have to provide a formal proof that the
functions in this tutorial are PRIM.)1

1Citation: Paul “sjorv” Zhang. “CSC363 Tutorial #2. Primitive Recursive
Functions. Five the primitive recursive scheme among us vr.”. Chungus Publishing, 2023.

2 / 17



What’s a function?

In the previous tutorial (Turing machines), functions were from Σ∗ to Σ∗.

computer science!!1!!

In this tutorial, all functions are from N to N (or from Nk to N).
(N includes 0 in this course.)

3 / 17



What’s a function?

In the previous tutorial (Turing machines), functions were from Σ∗ to Σ∗.

computer science!!1!!

In this tutorial, all functions are from N to N (or from Nk to N).
(N includes 0 in this course.)

3 / 17



What’s a function?

In the previous tutorial (Turing machines), functions were from Σ∗ to Σ∗.

computer science!!1!!

In this tutorial, all functions are from N to N (or from Nk to N).

(N includes 0 in this course.)

3 / 17



What’s a function?

In the previous tutorial (Turing machines), functions were from Σ∗ to Σ∗.

computer science!!1!!

In this tutorial, all functions are from N to N (or from Nk to N).
(N includes 0 in this course.)

3 / 17



Primitive Recursive functions

The primitive recursive functions (PRIM) are a collection of functions
f : Nk → N defined using structural recursion.

Rules:

1. The following initial functions are in PRIM:
▶ The zero function Z : N → N, Z (n) = 0.
▶ The successor function S : N → N, S(n) = n + 1.
▶ For each k ∈ N and i = 1, . . . , k, the projection function C k

i : Nk → N,
C k
i (n1, n2, . . . , nk) = ni .

2

2In other words, C k
i takes in k arguments, and returns the ith one.

4 / 17



Primitive Recursive functions

The primitive recursive functions (PRIM) are a collection of functions
f : Nk → N defined using structural recursion.

Rules:

1. The following initial functions are in PRIM:
▶ The zero function Z : N → N, Z (n) = 0.
▶ The successor function S : N → N, S(n) = n + 1.
▶ For each k ∈ N and i = 1, . . . , k, the projection function C k

i : Nk → N,
C k
i (n1, n2, . . . , nk) = ni .

2

2In other words, C k
i takes in k arguments, and returns the ith one.

4 / 17



Primitive Recursive functions

The primitive recursive functions (PRIM) are a collection of functions
f : Nk → N defined using structural recursion.

Rules:

1. The following initial functions are in PRIM:

▶ The zero function Z : N → N, Z (n) = 0.
▶ The successor function S : N → N, S(n) = n + 1.
▶ For each k ∈ N and i = 1, . . . , k, the projection function C k

i : Nk → N,
C k
i (n1, n2, . . . , nk) = ni .

2

2In other words, C k
i takes in k arguments, and returns the ith one.

4 / 17



Primitive Recursive functions

The primitive recursive functions (PRIM) are a collection of functions
f : Nk → N defined using structural recursion.

Rules:

1. The following initial functions are in PRIM:
▶ The zero function Z : N → N, Z (n) = 0.

▶ The successor function S : N → N, S(n) = n + 1.
▶ For each k ∈ N and i = 1, . . . , k, the projection function C k

i : Nk → N,
C k
i (n1, n2, . . . , nk) = ni .

2

2In other words, C k
i takes in k arguments, and returns the ith one.

4 / 17



Primitive Recursive functions

The primitive recursive functions (PRIM) are a collection of functions
f : Nk → N defined using structural recursion.

Rules:

1. The following initial functions are in PRIM:
▶ The zero function Z : N → N, Z (n) = 0.
▶ The successor function S : N → N, S(n) = n + 1.

▶ For each k ∈ N and i = 1, . . . , k, the projection function C k
i : Nk → N,

C k
i (n1, n2, . . . , nk) = ni .

2

2In other words, C k
i takes in k arguments, and returns the ith one.

4 / 17



Primitive Recursive functions

The primitive recursive functions (PRIM) are a collection of functions
f : Nk → N defined using structural recursion.

Rules:

1. The following initial functions are in PRIM:
▶ The zero function Z : N → N, Z (n) = 0.
▶ The successor function S : N → N, S(n) = n + 1.
▶ For each k ∈ N and i = 1, . . . , k , the projection function C k

i : Nk → N,
C k
i (n1, n2, . . . , nk) = ni .

2

2In other words, C k
i takes in k arguments, and returns the ith one.

4 / 17



Primitive Recursive functions
The primitive recursive functions (PRIM) are a collection of functions
f : Nk → N defined using structural recursion.

Rules:

2. The following structural recursion rules:

▶ Composition: If g : Nk → N and h1, h2, . . . , hk : Nℓ → N are in PRIM,
then f : Nℓ → N given by3

f (m⃗) = g(h1(m⃗), . . . , hk(m⃗))

is primitive recursive. In other words, you can compose primitive
recursive functions.

▶ Primitive Recursion: If g : Nℓ → N and h : Nℓ+2 → N are in PRIM,
then f : Nℓ+1 → N given by

f (m⃗, 0) = g(m⃗)

f (m⃗, n + 1) = h(m⃗, n, f (m⃗, n))

is primitive recursive.

3m⃗ ∈ Nℓ.
5 / 17



Primitive Recursive functions
The primitive recursive functions (PRIM) are a collection of functions
f : Nk → N defined using structural recursion.

Rules:

2. The following structural recursion rules:
▶ Composition: If g : Nk → N and h1, h2, . . . , hk : Nℓ → N are in PRIM,

then f : Nℓ → N given by3

f (m⃗) = g(h1(m⃗), . . . , hk(m⃗))

is primitive recursive.

In other words, you can compose primitive
recursive functions.

▶ Primitive Recursion: If g : Nℓ → N and h : Nℓ+2 → N are in PRIM,
then f : Nℓ+1 → N given by

f (m⃗, 0) = g(m⃗)

f (m⃗, n + 1) = h(m⃗, n, f (m⃗, n))

is primitive recursive.

3m⃗ ∈ Nℓ.
5 / 17



Primitive Recursive functions
The primitive recursive functions (PRIM) are a collection of functions
f : Nk → N defined using structural recursion.

Rules:

2. The following structural recursion rules:
▶ Composition: If g : Nk → N and h1, h2, . . . , hk : Nℓ → N are in PRIM,

then f : Nℓ → N given by3

f (m⃗) = g(h1(m⃗), . . . , hk(m⃗))

is primitive recursive. In other words, you can compose primitive
recursive functions.

▶ Primitive Recursion: If g : Nℓ → N and h : Nℓ+2 → N are in PRIM,
then f : Nℓ+1 → N given by

f (m⃗, 0) = g(m⃗)

f (m⃗, n + 1) = h(m⃗, n, f (m⃗, n))

is primitive recursive.

3m⃗ ∈ Nℓ.
5 / 17



Primitive Recursive functions
The primitive recursive functions (PRIM) are a collection of functions
f : Nk → N defined using structural recursion.

Rules:

2. The following structural recursion rules:
▶ Composition: If g : Nk → N and h1, h2, . . . , hk : Nℓ → N are in PRIM,

then f : Nℓ → N given by3

f (m⃗) = g(h1(m⃗), . . . , hk(m⃗))

is primitive recursive. In other words, you can compose primitive
recursive functions.

▶ Primitive Recursion: If g : Nℓ → N and h : Nℓ+2 → N are in PRIM,
then f : Nℓ+1 → N given by

f (m⃗, 0) = g(m⃗)

f (m⃗, n + 1) = h(m⃗, n, f (m⃗, n))

is primitive recursive.
3m⃗ ∈ Nℓ.

5 / 17



Primitive Recursion

Primitive Recursion: If g : Nℓ → N and h : Nℓ+2 → N are in PRIM, then
f : Nℓ+1 → N given by

f (m⃗, 0) = g(m⃗)

f (m⃗, n + 1) = h(m⃗, n, f (m⃗, n))

is primitive recursive.

In other words, you can use for-loops.

f(m, n):

curr = g(m)

for i in 1..n:

curr = h(m, i-1, curr)

return curr

This is very powerful!

6 / 17



Primitive Recursion

Primitive Recursion: If g : Nℓ → N and h : Nℓ+2 → N are in PRIM, then
f : Nℓ+1 → N given by

f (m⃗, 0) = g(m⃗)

f (m⃗, n + 1) = h(m⃗, n, f (m⃗, n))

is primitive recursive.
In other words, you can use for-loops.

f(m, n):

curr = g(m)

for i in 1..n:

curr = h(m, i-1, curr)

return curr

This is very powerful!

6 / 17



Primitive Recursion

Primitive Recursion: If g : Nℓ → N and h : Nℓ+2 → N are in PRIM, then
f : Nℓ+1 → N given by

f (m⃗, 0) = g(m⃗)

f (m⃗, n + 1) = h(m⃗, n, f (m⃗, n))

is primitive recursive.
In other words, you can use for-loops.

f(m, n):

curr = g(m)

for i in 1..n:

curr = h(m, i-1, curr)

return curr

This is very powerful!

6 / 17



Addition is in PRIM
The function + : N2 → N, f (m, n) = m + n is in PRIM, due to primitive
recursion:

+(m, n):

curr = C^1_1(m)

for i in 1..n:

curr = S(C^3_3(m, i-1, curr))

return curr

Explanation:

▶ C 1
1 is the identity function: C 1

1 (m) = m. 4

▶ curr = S(C^3_3(m, i-1, curr)) adds 1 to curr:

C 3
3 (m, i − 1, curr) = curr

S(curr) = curr+ 1

4Unfortunately, we have to put some PRIM function in place of g , according to
template...

7 / 17



Addition is in PRIM
The function + : N2 → N, f (m, n) = m + n is in PRIM, due to primitive
recursion:

+(m, n):

curr = C^1_1(m)

for i in 1..n:

curr = S(C^3_3(m, i-1, curr))

return curr

Explanation:

▶ C 1
1 is the identity function: C 1

1 (m) = m. 4

▶ curr = S(C^3_3(m, i-1, curr)) adds 1 to curr:

C 3
3 (m, i − 1, curr) = curr

S(curr) = curr+ 1

4Unfortunately, we have to put some PRIM function in place of g , according to
template...

7 / 17



Addition is in PRIM

The function + : N2 → N, f (m, n) = m + n is in PRIM, due to primitive
recursion:

+(m, n):

curr = C^1_1(m)

for i in 1..n:

curr = S(C^3_3(m, i-1, curr))

return curr

Formally,

+(m, 0) = C 1
1 (m⃗)

+(m, n + 1) = S(C 3
3 (m, n,+(m, n))).

8 / 17



Multiplication is in PRIM

Your turn! Show that the function f : N2 → N, f (m, n) = m · n is in
PRIM.

Here’s the template for primitive recursion again:

f(m, n):

curr = g(m)

for i in 1..n:

curr = h(m, i-1, curr)

return curr

Hint: You know that the addition function + : N2 → N, +(m, n) = m + n
is in PRIM now.

If you’re finished, try showing f : N2 → N, f (m, n) = mn is in PRIM too.

9 / 17



Multiplication is in PRIM

Your turn! Show that the function f : N2 → N, f (m, n) = m · n is in
PRIM.
Here’s the template for primitive recursion again:

f(m, n):

curr = g(m)

for i in 1..n:

curr = h(m, i-1, curr)

return curr

Hint: You know that the addition function + : N2 → N, +(m, n) = m + n
is in PRIM now.

If you’re finished, try showing f : N2 → N, f (m, n) = mn is in PRIM too.

9 / 17



More PRIM functions!
Show that f : N2 → N, f (m, n) = m − n is in PRIM.

Unfortunately, the above function is not N → N. You can’t output
negative numbers!
Try this instead. Task: Show that the “try to subtract 1” function

δ : N → N, δ(m) =

{
m − 1 m > 0

0 m = 0

is in PRIM.

Hint 1: Try to prove f : N2 → N, f (m, n) = δ(n) is in PRIM.

f(m, n):

curr = g(m)

for i in 1..n:

curr = h(m, i-1, curr)

return curr

Hint 2: In the above, h won’t need the value of m or curr.

10 / 17



More PRIM functions!
Show that f : N2 → N, f (m, n) = m − n is in PRIM.
Unfortunately, the above function is not N → N. You can’t output
negative numbers!

Try this instead. Task: Show that the “try to subtract 1” function

δ : N → N, δ(m) =

{
m − 1 m > 0

0 m = 0

is in PRIM.

Hint 1: Try to prove f : N2 → N, f (m, n) = δ(n) is in PRIM.

f(m, n):

curr = g(m)

for i in 1..n:

curr = h(m, i-1, curr)

return curr

Hint 2: In the above, h won’t need the value of m or curr.

10 / 17



More PRIM functions!
Show that f : N2 → N, f (m, n) = m − n is in PRIM.
Unfortunately, the above function is not N → N. You can’t output
negative numbers!
Try this instead. Task: Show that the “try to subtract 1” function

δ : N → N, δ(m) =

{
m − 1 m > 0

0 m = 0

is in PRIM.

Hint 1: Try to prove f : N2 → N, f (m, n) = δ(n) is in PRIM.

f(m, n):

curr = g(m)

for i in 1..n:

curr = h(m, i-1, curr)

return curr

Hint 2: In the above, h won’t need the value of m or curr.

10 / 17



More PRIM functions!
Show that f : N2 → N, f (m, n) = m − n is in PRIM.
Unfortunately, the above function is not N → N. You can’t output
negative numbers!
Try this instead. Task: Show that the “try to subtract 1” function

δ : N → N, δ(m) =

{
m − 1 m > 0

0 m = 0

is in PRIM.

Hint 1: Try to prove f : N2 → N, f (m, n) = δ(n) is in PRIM.

f(m, n):

curr = g(m)

for i in 1..n:

curr = h(m, i-1, curr)

return curr

Hint 2: In the above, h won’t need the value of m or curr.
10 / 17



More PRIM functions!

Task: Show that the “try to subtract” function

−̇ : N2 → N, −̇(m, n) =

{
m − n m ≥ n

0 m < n

is in PRIM.

f(m, n):

curr = g(m)

for i in 1..n:

curr = h(m, i-1, curr)

return curr

Hint: Use the “try to subtract 1” function δ.

11 / 17



More PRIM functions!

Task: Show that the “try to subtract” function

−̇ : N2 → N, −̇(m, n) =

{
m − n m ≥ n

0 m < n

is in PRIM.

f(m, n):

curr = g(m)

for i in 1..n:

curr = h(m, i-1, curr)

return curr

Hint: Use the “try to subtract 1” function δ.

11 / 17



More PRIM functions!

Task: Show that the “is greater than zero?” function

sg : N → N, sg(n) =

{
0 n = 0

1 n > 0

is in PRIM.

f(m, n):

curr = g(m)

for i in 1..n:

curr = h(m, i-1, curr)

return curr

12 / 17



More PRIM functions!

Task: Show that the “is equal than zero?” function

sg : N → N, sg(n) =

{
1 n = 0

0 n > 0

is in PRIM.
Hint: You could do this using primitive recursion, but a shorter solution
would be to use sg.

13 / 17



Recap

We’ve shown that the following functions are in PRIM:

▶ +,

▶ ·,
▶ Exponentiation,

▶ δ,

▶ −̇,

▶ sg, sg.

Note that sg, sg allow you to use ”if-statements”.

14 / 17



Recap

We’ve shown that the following functions are in PRIM:

▶ +,

▶ ·,
▶ Exponentiation,

▶ δ,

▶ −̇,

▶ sg, sg.

Note that sg, sg allow you to use ”if-statements”.

14 / 17



Recap

We’ve shown that the following functions are in PRIM:

▶ +,

▶ ·,
▶ Exponentiation,

▶ δ,

▶ −̇,

▶ sg, sg.

Note that sg, sg allow you to use ”if-statements”.

14 / 17



Recap

We’ve shown that the following functions are in PRIM:

▶ +,

▶ ·,

▶ Exponentiation,

▶ δ,

▶ −̇,

▶ sg, sg.

Note that sg, sg allow you to use ”if-statements”.

14 / 17



Recap

We’ve shown that the following functions are in PRIM:

▶ +,

▶ ·,
▶ Exponentiation,

▶ δ,

▶ −̇,

▶ sg, sg.

Note that sg, sg allow you to use ”if-statements”.

14 / 17



Recap

We’ve shown that the following functions are in PRIM:

▶ +,

▶ ·,
▶ Exponentiation,

▶ δ,

▶ −̇,

▶ sg, sg.

Note that sg, sg allow you to use ”if-statements”.

14 / 17



Recap

We’ve shown that the following functions are in PRIM:

▶ +,

▶ ·,
▶ Exponentiation,

▶ δ,

▶ −̇,

▶ sg, sg.

Note that sg, sg allow you to use ”if-statements”.

14 / 17



Recap

We’ve shown that the following functions are in PRIM:

▶ +,

▶ ·,
▶ Exponentiation,

▶ δ,

▶ −̇,

▶ sg, sg.

Note that sg, sg allow you to use ”if-statements”.

14 / 17



Recap

We’ve shown that the following functions are in PRIM:

▶ +,

▶ ·,
▶ Exponentiation,

▶ δ,

▶ −̇,

▶ sg, sg.

Note that sg, sg allow you to use ”if-statements”.

14 / 17



Recap

We’ve shown that the following functions are in PRIM:

▶ +,

▶ ·,
▶ Exponentiation,

▶ δ,

▶ −̇,

▶ sg, sg.

Note that sg, sg allow you to use ”if-statements”.

14 / 17



Is PRIM everything?

Nope. Some functions, such as the Ackermann Function, are not in PRIM
unfortunately.

Ackermann(m, n):

if m = 0:

return n + 1

if n = 0:

return Ackermann(m - 1, 1)

return Ackermann(m-1, Ackermann(m, n-1))

It grows too quickly to be captured using for-loops.

15 / 17



Is PRIM everything?
Nope. Some functions, such as the Ackermann Function, are not in PRIM
unfortunately.

Ackermann(m, n):

if m = 0:

return n + 1

if n = 0:

return Ackermann(m - 1, 1)

return Ackermann(m-1, Ackermann(m, n-1))

It grows too quickly to be captured using for-loops.

15 / 17



Is PRIM everything?
Nope. Some functions, such as the Ackermann Function, are not in PRIM
unfortunately.

Ackermann(m, n):

if m = 0:

return n + 1

if n = 0:

return Ackermann(m - 1, 1)

return Ackermann(m-1, Ackermann(m, n-1))

It grows too quickly to be captured using for-loops.

15 / 17



Is PRIM everything?
Nope. Some functions, such as the Ackermann Function, are not in PRIM
unfortunately.

Ackermann(m, n):

if m = 0:

return n + 1

if n = 0:

return Ackermann(m - 1, 1)

return Ackermann(m-1, Ackermann(m, n-1))

It grows too quickly to be captured using for-loops.
15 / 17



Is PRIM everything?

Nope. Some functions, such as the Ackermann Function, are not in PRIM
unfortunately.

Ackermann(m, n):

if m = 0:

return n + 1

if n = 0:

return Ackermann(m - 1, 1)

return Ackermann(m-1, Ackermann(m, n-1))

Proof (hard!): show that the set of functions

A = {f : ∃t ∈ N,∀x1, . . . , xn ∈ N, f (x1, . . . , xn) < A(t,max
i

xi )}

contains all PRIM functions, via structural induction. This shows that
A(m, n) grows strictly faster than any PRIM function, and hence cannot
be PRIM itself.

16 / 17



Is PRIM everything?

Nope. Some functions, such as the Ackermann Function, are not in PRIM
unfortunately.

Ackermann(m, n):

if m = 0:

return n + 1

if n = 0:

return Ackermann(m - 1, 1)

return Ackermann(m-1, Ackermann(m, n-1))

Proof (hard!): show that the set of functions

A = {f : ∃t ∈ N,∀x1, . . . , xn ∈ N, f (x1, . . . , xn) < A(t,max
i

xi )}

contains all PRIM functions, via structural induction. This shows that
A(m, n) grows strictly faster than any PRIM function, and hence cannot
be PRIM itself.

16 / 17



Is PRIM everything?

Nope. Some functions, such as the Ackermann Function, are not in PRIM
unfortunately.

Ackermann(m, n):

if m = 0:

return n + 1

if n = 0:

return Ackermann(m - 1, 1)

return Ackermann(m-1, Ackermann(m, n-1))

Proof (hard!): show that the set of functions

A = {f : ∃t ∈ N,∀x1, . . . , xn ∈ N, f (x1, . . . , xn) < A(t,max
i

xi )}

contains all PRIM functions, via structural induction. This shows that
A(m, n) grows strictly faster than any PRIM function, and hence cannot
be PRIM itself.

16 / 17



Is PRIM everything?

Nope. Some functions, such as the Ackermann Function, are not in PRIM
unfortunately.

Ackermann(m, n):

if m = 0:

return n + 1

if n = 0:

return Ackermann(m - 1, 1)

return Ackermann(m-1, Ackermann(m, n-1))

Proof (hard!): show that the set of functions

A = {f : ∃t ∈ N,∀x1, . . . , xn ∈ N, f (x1, . . . , xn) < A(t,max
i

xi )}

contains all PRIM functions, via structural induction.

This shows that
A(m, n) grows strictly faster than any PRIM function, and hence cannot
be PRIM itself.

16 / 17



Is PRIM everything?

Nope. Some functions, such as the Ackermann Function, are not in PRIM
unfortunately.

Ackermann(m, n):

if m = 0:

return n + 1

if n = 0:

return Ackermann(m - 1, 1)

return Ackermann(m-1, Ackermann(m, n-1))

Proof (hard!): show that the set of functions

A = {f : ∃t ∈ N,∀x1, . . . , xn ∈ N, f (x1, . . . , xn) < A(t,max
i

xi )}

contains all PRIM functions, via structural induction. This shows that
A(m, n) grows strictly faster than any PRIM function, and hence cannot
be PRIM itself.

16 / 17



Is PRIM everything?

Nope. Some other functions, such as the halting problem, are not even
computable!5

To avoid spoiling content, I am legally required to not speak any further
on the halting problem.

5In other words, you can’t write a Turing machine (or equivalently a Python
program) to compute the halting problem.

17 / 17



Is PRIM everything?

Nope.

Some other functions, such as the halting problem, are not even
computable!5

To avoid spoiling content, I am legally required to not speak any further
on the halting problem.

5In other words, you can’t write a Turing machine (or equivalently a Python
program) to compute the halting problem.

17 / 17



Is PRIM everything?

Nope. Some other functions, such as the halting problem, are not even
computable!5

To avoid spoiling content, I am legally required to not speak any further
on the halting problem.

5In other words, you can’t write a Turing machine (or equivalently a Python
program) to compute the halting problem.

17 / 17



Is PRIM everything?

Nope. Some other functions, such as the halting problem, are not even
computable!5

To avoid spoiling content, I am legally required to not speak any further
on the halting problem.

5In other words, you can’t write a Turing machine (or equivalently a Python
program) to compute the halting problem.

17 / 17


