u‘"m~ (/L;j’\.z) Y
___-—@y ~~———
January 25, 2023

1/17

Things covered in this tutorial

2/17

Things covered in this tutorial

> What's a “function”?

2/17

Things covered in this tutorial

> What's a “function”?

> What are the primitive recursive functions?

2/17

Things covered in this tutorial

> What's a “function”?
> What are the primitive recursive functions?

P> How can | use composition and primitive recursion?

2/17

Things covered in this tutorial

> What's a “function”?
> What are the primitive recursive functions?

P> How can | use composition and primitive recursion?
> Could | get a hint for A1 Q37

2/17

What's a “function”?
What are the primitive recursive functions?
How can | use composition and primitive recursion?

Could | get a hint for A1 Q37 No, but you may cite these slides for
your homework. (You still have to provide a formal proof that the
functions in this tutorial are PRIM.)?

!Citation: Paul “sjorv’ Zhang. “CSC363 Tutorial #2. Primitive Recursive

Functions. Five the primitive recursive scheme among us v Chungus Publishing, 2023.
2/17

function

3/17

What's a function?

In the previous tutorial (Turing machines), functions were from £* to ¥*.

3/17

function

In the previous tutorial (Turing machines), functions were from £* to ¥*.
computer science!l1!! (5]e)

In this tutorial, all functions are from N to N (or from N¥ to N).

3/17

function

In the previous tutorial (Turing machines), functions were from £* to ¥*.
computer science!l1!! (5]e)

In this tutorial, all functions are from N to N (or from N¥ to N).
(N includes 0 in this course.)

3/17

Primitive Recursive functions

The primitive recursive functions (PRIM) are a collection of functions
f : N¥ — N defined using structural recursion.

4/17

Primitive Recursive functions

The primitive recursive functions (PRIM) are a collection of functions
f : N¥ — N defined using structural recursion.

Rules:

4/17

Primitive Recursive functions

The primitive recursive functions (PRIM) are a collection of functions
f : N¥ — N defined using structural recursion.

Rules:

1. The following initial functions are in PRIM:

4/17

Primitive Recursive functions

The primitive recursive functions (PRIM) are a collection of functions
f : N¥ — N defined using structural recursion.

Rules:

1. The following initial functions are in PRIM:
> The zero function Z: N — N, Z(n) = 0.

4/17

Primitive Recursive functions

The primitive recursive functions (PRIM) are a collection of functions
f : N¥ — N defined using structural recursion.

Rules:

1. The following initial functions are in PRIM:
> The zero function Z: N — N, Z(n) = 0.
> The successor function S: N — N, S(n) =n+ 1.

4/17

Primitive Recursive functions

The primitive recursive functions (PRIM) are a collection of functions
f : N¥ — N defined using structural recursion.

Rules:

1. The following initial functions are in PRIM:
> The zero function Z: N — N, Z(n) = 0.
> The successor function S: N — N, S(n) =n+ 1.

» For each k € Nand i =1,...,k, the projection function C : N¥ — N,
CK(ni,ma, ..., ng) = n;.2

2In other words, C/ takes in k arguments, and returns the ith one.

4/17

Primitive Recursive functions

The primitive recursive functions (PRIM) are a collection of functions
f : N¥ — N defined using structural recursion.

Rules:

2. The following structural recursion rules:

3m e N

5/17

Primitive Recursive functions

The primitive recursive functions (PRIM) are a collection of functions
f : N¥ — N defined using structural recursion.

Rules:

2. The following structural recursion rules:

» Composition: If g : N¥ = N and hy, hy, ..., he : N® = N are in PRIM,
then f : N* — N given by?

F(m) = g(hi(m), ..., hi(m))

is primitive recursive.

3m e N

5/17

Primitive Recursive functions

The primitive recursive functions (PRIM) are a collection of functions
f : N¥ — N defined using structural recursion.

Rules:

2. The following structural recursion rules:

» Composition: If g : N¥ = N and hy, hy, ..., he : N® = N are in PRIM,
then f : N* — N given by?

F(m) = g(hi(m), ..., hi(m))

is primitive recursive. In other words, you can compose primitive
recursive functions.

3m e N

5/17

Primitive Recursive functions

The primitive recursive functions (PRIM) are a collection of functions
f : N¥ — N defined using structural recursion.

Rules:

2. The following structural recursion rules:

» Composition: If g : N — N and hy, hy,

...,hk:NZ—>Nare in PRIM,
then f : N* — N given by?

F(m) = g(hi(m), ..., hi(m))

is primitive recursive. In other words, you can compose primitive
recursive functions.

P Primitive Recursion: If g : N! - N and h: N2 5 N are in PRIM,
then f : N1 — N given by

is primitive recursive.

3m e N

5/17

Primitive Recursion

Primitive Recursion: If g : NY — N and h: N2 — N are in PRIM, then
f N1 5 N given by

f(m,0) = g(m)
f(m,n+ 1) = h(m,n, f(m,n))

is primitive recursive.

6/17

Primitive Recursion

Primitive Recursion: If g : NY — N and h: N2 — N are in PRIM, then
f N1 5 N given by

f(m,0) = g(m)
f(m,n+ 1) = h(m,n, f(m,n))

is primitive recursive.
In other words, you can use for-loops.

6/17

Primitive Recursion

Primitive Recursion: If g : NY — N and h: N2 — N are in PRIM, then
f N1 5 N given by

f(m,0) = g(m)
f(m,n+ 1) = h(m,n, f(m,n))

is primitive recursive.
In other words, you can use for-loops.

f(m, n):
curr = g(m)
for i in 1..n:
curr = h(m, i-1, curr)
return curr

This is very powerful!

6/17

Addition is in PRIM

The function + : N2 — N, f(m, n) = m+ n is in PRIM, due to primitive

recursion:

+(m, n):
curr = C~1_1(m)
for i in 1. .n:
curr = S(C°3_3(m, i-1, curr))

return curr

*Unfortunately, we have to put some PRIM function in place of g, according to

template...

7/17

Addition is in PRIM
The function + : N2 — N, f(m, n) = m+ n is in PRIM, due to primitive
recursion:

+(m, n):
curr = C~1_1(m)
for i in 1..n:
curr = S(C°3_3(m, i-1, curr))

return curr

Explanation:
» C}l is the identity function: Ci(m)=m. *

P curr = S(C"3_3(m, i-1, curr)) adds 1 to curr:
C3(m,i—1,curr) = curr

S(curr) = curr +1

*Unfortunately, we have to put some PRIM function in place of g, according to

template...
7/17

Addition is in PRIM

The function + : N2 — N, f(m, n) = m+ n is in PRIM, due to primitive

recursion:

+(m, n):
curr = C~1_1(m)
for i in 1..n:
curr = S(C~3_3(m, i-1, curr))
return curr

Formally,

8/17

Multiplication is in PRIM

Your turn! Show that the function f : N2 — N, f(m,n) = m-nis in
PRIM.

9/17

Multiplication is in PRIM

Your turn! Show that the function f : N2 — N, f(m,n) = m-nis in
PRIM.

Here's the template for primitive recursion again:

f(m, n):
curr = g(m)
for i in 1..n:
curr = h(m, i-1, curr)
return curr

Hint: You know that the addition function + : N2> — N, +(m,n) = m+n
is in PRIM now.

If you're finished, try showing f : N> = N, f(m, n) = m" is in PRIM too.

9/17

More PRIM functions!
Show that f : N> = N, f(m,n) = m — nis in PRIM.

10/17

More PRIM functions!

2

[9 -

Unfortunately, the above function is not N — N. You can't output
negative numbers!

10/17

More PRIM functions!

2

)

Unfortunately, the above function is not N — N. You can't output
negative numbers!

Try this instead. Task: Show that the “try to subtract 1" function

-1 >0
d:N—=N,§(m)= . m
0] m=20
is in PRIM.

10/17

More PRIM functions!

2

)

Unfortunately, the above function is not N — N. You can't output
negative numbers!

Try this instead. Task: Show that the “try to subtract 1" function

-1
d:N—=N,§(m)= m m =0
0] m=20
is in PRIM.

Hint 1: Try to prove f : N> — N, f(m, n) = 6(n) is in PRIM.
f(m, n):

curr = g(m)
for i in 1. .n:

curr = h(m, i-1, curr)
return curr

Hint 2: In the above, h won't need the value of m or curr.

10/17

More PRIM functions!

Task: Show that the “try to subtract” function

m—n m2>n

¥:N2—>N,;(m,n):{
0 m<n

is in PRIM.

11/17

More PRIM functions!

Task: Show that the “try to subtract” function

. 5 . m-—n m2>n
—:N* =N, —(m,n) =

0] m<n
is in PRIM.

f(m, n):
curr = g(m)
for i in 1..n:
curr = h(m, i-1, curr)
return curr

Hint: Use the “try to subtract 1" function ¢.

11/17

More PRIM functions!

Task: Show that the “is greater than zero?" function

0 n=0

N =N, =
sg sg(n) {1 R

is in PRIM.

f(m, n):
curr = g(m)
for i in 1..n:
curr = h(m, i-1, curr)
return curr

12/17

More PRIM functions!

Task: Show that the “is equal than zero?" function

1 n=0
sg: N — N,s¢(n) =
g g(n) {o R
is in PRIM.

Hint: You could do this using primitive recursion, but a shorter solution
would be to use sg.

13/17

Recap

14/17

Recap

We've shown that the following functions are in PRIM:

14/17

Recap

We've shown that the following functions are in PRIM:
> 4+

14/17

Recap

We've shown that the following functions are in PRIM:

> 4+
» .

14/17

Recap

We've shown that the following functions are in PRIM:

> 4+
» .

> Exponentiation,

14/17

Recap

We've shown that the following functions are in PRIM:

> 4+
b

> Exponentiation,
> 6

14/17

Recap

We've shown that the following functions are in PRIM:
> 4+
Exponentiation,

g,

vVvyyywy

14/17

Recap

We've shown that the following functions are in PRIM:
> 4+
Exponentiation,

g,

vVvYyyvyy

Sg, Sg.

14/17

Recap

We've shown that the following functions are in PRIM:
> 4+
Exponentiation,

g,

vVvYyyvyy

Sg, Sg.

14/17

Recap

We've shown that the following functions are in PRIM:
> 4+

Exponentiation,

J,

vVvyyywy

> sg, 58.
Note that sg, sg allow you to use "if-statements”.

14/17

Is PRIM everything?

15/17

Is PRIM everything?

Nope. Some functions, such as the Ackermann Function, are not in PRIM
unfortunately.

15/17

Is PRIM everything?

Nope. Some functions, such as the Ackermann Function, are not in PRIM
unfortunately.

Ackermann(m, n):

if m = 0:
return n + 1
if n = 0:

return Ackermann(m - 1, 1)
return Ackermann(m-1, Ackermann(m, n-1))

15/17

Nope. Some functions, such as the Ackermann Function, are not in PRIM
unfortunately.

Ackermann(m, n):

if m = 0O:
return n + 1
if n = O:

return Ackermann(m - 1, 1)
return Ackermann(m-1, Ackermann(m, n-1))

It grows too quickly to be captured using for-loops.

15/17

Is PRIM everything?

16 /17

Is PRIM everything?

Nope. Some functions, such as the Ackermann Function, are not in PRIM
unfortunately.

16/17

Is PRIM everything?

Nope. Some functions, such as the Ackermann Function, are not in PRIM

unfortunately.

Ackermann(m, n):

if m = 0:
return n + 1
if n = 0:

return Ackermann(m - 1, 1)

return Ackermann(m-1, Ackermann(m, n-1))

16/17

Is PRIM everything?

Nope. Some functions, such as the Ackermann Function, are not in PRIM
unfortunately.

Ackermann(m, n):

if m = 0O:
return n + 1
if n = 0:

return Ackermann(m - 1, 1)
return Ackermann(m-1, Ackermann(m, n-1))

Proof (hard!): show that the set of functions
A={f:3t e N,Vxy,...,xs € N, f(x1,...,xn) < A(t, maxx;)}

contains all PRIM functions, via structural induction.

16/17

Is PRIM everything?

Nope. Some functions, such as the Ackermann Function, are not in PRIM
unfortunately.

Ackermann(m, n):

if m = 0O:
return n + 1
if n = 0:

return Ackermann(m - 1, 1)
return Ackermann(m-1, Ackermann(m, n-1))

Proof (hard!): show that the set of functions

A={f:3t e N,Vxy,...,xs € N, f(x1,...,xn) < A(t, maxx;)}

contains all PRIM functions, via structural induction. This shows that
A(m, n) grows strictly faster than any PRIM function, and hence cannot
be PRIM itself.

16/17

Is PRIM everything?

®In other words, you can't write a Turing machine (or equivalently a Python

program) to compute the halting problem.
17/17

Is PRIM everything?

Nope.

®In other words, you can't write a Turing machine (or equivalently a Python

program) to compute the halting problem.
17/17

Is PRIM everything?

Nope. Some other functions, such as the halting problem, are not even
computable!®

®In other words, you can't write a Turing machine (or equivalently a Python

program) to compute the halting problem.
17/17

Is PRIM everything?

Nope. Some other functions, such as the halting problem, are not even

computable!®

To avoid spoiling content, | am legally required to not speak any further
on the halting problem.

®In other words, you can't write a Turing machine (or equivalently a Python

program) to compute the halting problem.
17/17

