CSC363 Tutorial #3 Decidable and Recognizable sets

February 1, 2023

 \star What's a language?

 \star What's a language?

 \star What's a decidable language? What's a recognizable language?

- \star What's a language?
- \star What's a decidable language? What's a recognizable language?
- \star How many synonyms are there for "decidable" and "recognizable"?

- \star What's a language?
- \star What's a decidable language? What's a recognizable language?
- \star How many synonyms are there for "decidable" and "recognizable"?
- \star How do I show that something is decidable or recognizable?

- \star What's a language?
- \star What's a decidable language? What's a recognizable language?
- \star How many synonyms are there for "decidable" and "recognizable"?
- \star How do I show that something is decidable or recognizable?
- \star What's an enumerator?
- \star Can I get a hint for A2?

- \star What's a language?
- \star What's a decidable language? What's a recognizable language?
- \star How many synonyms are there for "decidable" and "recognizable"?
- \star How do I show that something is decidable or recognizable?
- \star What's an enumerator?
- \star Can I get a hint for A2? No, but you may cite these slides for your homework. (You still have to prove everything.) 1

¹Citation: Paul "sjory" Zhang. "Sussy Tutorial $#3$. Decidable and Recognizable bets. EXTRACT MONEY FROM STUDENTS Publishing, 2023.

Let \overline{T} be a Turing machine. Recall that given a string input $w\in \Sigma^*$, one of the following will happen:

Let \overline{T} be a Turing machine. Recall that given a string input $w\in \Sigma^*$, one of the following will happen:

 \star $T(w)$ accepts, and outputs whatever is left on the tape.

Let \overline{T} be a Turing machine. Recall that given a string input $w\in \Sigma^*$, one of the following will happen:

- \star $T(w)$ accepts, and outputs whatever is left on the tape.
- \star $T(w)$ rejects, and outputs whatever is left on the tape.

Let \overline{T} be a Turing machine. Recall that given a string input $w\in \Sigma^*$, one of the following will happen:

- \star $T(w)$ accepts, and outputs whatever is left on the tape.
- \star $T(w)$ rejects, and outputs whatever is left on the tape.
- \star $\tau(w)$ loops.

Let \overline{T} be a Turing machine. Recall that given a string input $w\in \Sigma^*$, one of the following will happen:

- \star $T(w)$ accepts, and outputs whatever is left on the tape.
- \star $T(w)$ rejects, and outputs whatever is left on the tape.
- \star $\tau(w)$ loops.

Church-Turing Thesis:

Anything that your computer can do, so can a Turing machine.

Let \overline{T} be a Turing machine. Recall that given a string input $w\in \Sigma^*$, one of the following will happen:

- \star $T(w)$ accepts, and outputs whatever is left on the tape.
- \star $T(w)$ rejects, and outputs whatever is left on the tape.
- \star $\tau(w)$ loops.

Church-Turing Thesis:

Anything that your computer can do, so can a Turing machine.

For this tutorial, we will use the Church-Turing Thesis to write pseudocode instead of low-level TMs.

Languages

If you still remember from CSC263, recall what a *language* is.

Languages

If you still remember from CSC263, recall what a *language* is.

Let Σ be an alphabet. Then Σ^* is the set of all finite strings using characters from Σ.

Languages

If you still remember from CSC263, recall what a *language* is.

Let Σ be an alphabet. Then Σ^* is the set of all finite strings using characters from Σ . A language is any subset of Σ^* .

Let $L \subseteq \Sigma^*$ be a language.

Let $L \subseteq \Sigma^*$ be a language. We say L is decidable if there is a Turing machine M (called the **decider**) such that for any input $s \in \Sigma^*$:

Let $L \subseteq \Sigma^*$ be a language. We say L is decidable if there is a Turing machine M (called the **decider**) such that for any input $s \in \Sigma^*$: \star If $s \in L$, then M accepts s.

Let $L \subseteq \Sigma^*$ be a language. We say L is decidable if there is a Turing machine M (called the **decider**) such that for any input $s \in \Sigma^*$:

 \star If $s \in L$, then M accepts s.

 \star If $s \notin L$, then M rejects s.

Let $L \subseteq \Sigma^*$ be a language. We say L is decidable if there is a Turing machine M (called the **decider**) such that for any input $s \in \Sigma^*$:

 \star If $s \in L$, then M accepts s.

 \star If $s \notin L$, then M rejects s.

Let $L \subseteq \Sigma^*$ be a language. We say L is decidable if there is a Turing machine M (called the **decider**) such that for any input $s \in \Sigma^*$:

- \star If $s \in L$, then M accepts s.
- \star If $s \notin L$, then M rejects s.

We say L is recognizable if there is a Turing machine M (called the **recognizer**) such that for any input $s \in \Sigma^*$:

```
\star If s \in L, then M accepts s.
```
 \star If $s \notin L$, then M rejects or loops on s.

Let $L \subseteq \Sigma^*$ be a language. We say L is decidable if there is a Turing machine M (called the **decider**) such that for any input $s \in \Sigma^*$:

- \star If $s \in L$, then M accepts s.
- \star If $s \notin L$, then M rejects s.

We say L is **recognizable** if there is a Turing machine M (called the **recognizer**) such that for any input $s \in \Sigma^*$:

- \star If $s \in L$, then M accepts s.
- \star If $s \notin L$, then M rejects or loops on s.

Note the difference! M always has to halt in order to be a decider.

Let $L \subseteq \Sigma^*$ be a language. We say L is decidable if there is a Turing machine M (called the **decider**) such that for any input $s \in \Sigma^*$:

 \star If $s \in L$, then M accepts s.

 \star If $s \notin L$, then M rejects s.

Example:

Let $L \subseteq \Sigma^*$ be a language. We say L is decidable if there is a Turing machine M (called the **decider**) such that for any input $s \in \Sigma^*$:

 \star If $s \in L$, then M accepts s.

 \star If $s \notin L$, then M rejects s.

Example: Let $\Sigma = \{0, 1\}$, and $L = \{0^n1^n : n \in \mathbb{N}\}$.² Show that L is decidable.

²That is, $L = \{ \epsilon, 01, 0011, 000111, \ldots \}.$

Let $L \subseteq \Sigma^*$ be a language. We say L is decidable if there is a Turing machine M (called the **decider**) such that for any input $s \in \Sigma^*$:

 \star If $s \in L$, then M accepts s.

 \star If $s \notin L$, then M rejects s.

Example: Let $\Sigma = \{0, 1\}$, and $L = \{0^n1^n : n \in \mathbb{N}\}$.² Show that L is decidable.

Proof. The following is the pseudocode of a decider M for L:

²That is, $L = \{ \epsilon, 01, 0011, 000111, \ldots \}.$

Let $L \subseteq \Sigma^*$ be a language. We say L is decidable if there is a Turing machine M (called the **decider**) such that for any input $s \in \Sigma^*$:

 \star If $s \in L$, then M accepts s.

 \star If $s \notin L$, then M rejects s.

```
Example: Let \Sigma = \{0, 1\}, and L = \{0^n1^n : n \in \mathbb{N}\}.<sup>2</sup> Show that L is
decidable.
Proof. The following is the pseudocode of a decider M for L:
M(w):
  n = length(w)if n is odd:
     reject
  for i in 0 to (n/2 - 1):
     if w[n/2] != 0 or w[n/2 + i] != 1:
        reject
  accept
   <sup>2</sup>That is, L = \{ \epsilon, 01, 0011, 000111, \ldots \}.
```
Decidable languages are also known as recursive languages.

Decidable languages are also known as recursive languages.

Here are some synonyms for recognizable:

- \star Listable.
- \star Recursively enumerable (r.e.).
- \star Computably enumerable (c.e.).
- \star Partially decidable.
- \star Σ_1^0 .

Worksheet time!

Try doing Exercise -1. Here's the definition of decidable again:

Let $L \subseteq \Sigma^*$ be a language. We say L is decidable if there is a Turing machine M (called the **decider**) such that for any input $s \in \Sigma^*$:

Worksheet time!

Try doing Exercise -1. Here's the definition of decidable again:

Let $L \subseteq \Sigma^*$ be a language. We say L is decidable if there is a Turing machine M (called the **decider**) such that for any input $s \in \Sigma^*$:

 \star If $s \in L$, then M accepts s.

 \star If $s \notin L$, then M rejects s.

If you are done, try Exercise 0 as well.

Decidable Languages

Here are some more examples of decidable languages:

³Recall from CSC236 that regular language is a language that is decidable by a DFA. 10 / 20

Decidable Languages

Here are some more examples of decidable languages:

 \star Any regular language.³

³Recall from CSC236 that regular language is a language that is decidable by a DFA. 10 / 20

Decidable Languages

Here are some more examples of decidable languages:

- \star Any regular language.³
- $\star L = \{w :$ Someone in this room has a credit card with number w $\}.$

³Recall from CSC236 that regular language is a language that is decidable by a DFA. 10 / 20
Here are some more examples of decidable languages:

- \star Any regular language.³
- $\star L = \{w :$ Someone in this room has a credit card with number w $\}.$
- \star In fact, any finite language L is decidable!

³Recall from CSC236 that regular language is a language that is decidable by a DFA. 10 / 20

Here are some more examples of decidable languages:

- \star Any regular language.³
- $\star L = \{w :$ Someone in this room has a credit card with number w $\}.$
- \star In fact, any finite language L is decidable!
- $\star L = \{w : w$ is a grammatically correct English sentence.

 3 Recall from CSC236 that regular language is a language that is decidable by a DFA. 10 / 20

Here are some more examples of decidable languages:

- \star Any regular language.³
- $\star L = \{w :$ Someone in this room has a credit card with number w $\}.$
- \star In fact, any finite language L is decidable!
- $\star L = \{w : w$ is a grammatically correct English sentence.
- $\star L = \{w : w$ is a valid solution to the P vs NP problem}.

 3 Recall from CSC236 that regular language is a language that is decidable by a DFA. 10 / 20

Here are some more examples of decidable languages:

- \star Any regular language.³
- $\star L = \{w :$ Someone in this room has a credit card with number w $\}.$
- \star In fact, any finite language L is decidable!
- $\star L = \{w : w$ is a grammatically correct English sentence.

 $\star L = \{w : w$ is a valid solution to the P vs NP problem}. and (infinitely) many more!

 3 Recall from CSC236 that regular language is a language that is decidable by a DFA. 10 / 20

Here are some more examples of decidable languages:

- \star Any regular language.³
- $\star L = \{w :$ Someone in this room has a credit card with number w.
- \star In fact, any finite language L is decidable!
- $\star L = \{w : w$ is a grammatically correct English sentence.
- $\star L = \{w : w$ is a valid solution to the P vs NP problem}. and (infinitely) many more!

Are there any non-decidable languages?

³Recall from CSC236 that regular language is a language that is decidable by a DFA. 10 / 20

Are there any non-decidable languages?

⁴Recall that a Diophantine equation is a multivariable equation like $x^3 + 3xyz - w^{420} = 2$.

Are there any non-decidable languages? Yes.

 $L = \{p : p$ is a Diophantine equation that has a natural solution}

is not decidable!⁴

⁴Recall that a Diophantine equation is a multivariable equation like $x^3 + 3xyz - w^{420} = 2$.

Are there any non-decidable languages? Yes.

 $L = \{p : p$ is a Diophantine equation that has a natural solution }

is not decidable!⁴

Source: trust me bro.⁵

⁵You can look up "Hilbert's tenth problem".

⁴Recall that a Diophantine equation is a multivariable equation like $x^3 + 3xyz - w^{420} = 2$.

 $L = \{p : p$ is a Diophantine equation that has a natural solution $\}$ is not decidable¹⁶

 6 Recall that a Diophantine equation is a multivariable equation like

 $L = \{p : p$ is a Diophantine equation that has a natural solution $\}$ is not decidable! $6L$ is recognizable though.

 6 Recall that a Diophantine equation is a multivariable equation like

 $L = \{p : p$ is a Diophantine equation that has a natural solution $\}$ is not decidable! $6L$ is recognizable though.

Source:

```
M(p):
  if p isn't a valid Diophantine equation:
    reject
  n = number of variables in p
  s = 0while True:
    for all x1, x2, \dots, xnwith x1 + x2 + ... + xn = s:
      if (x1, x2, ... xn) is a solution to p:
        accept
      s += 1
```
 6 Recall that a Diophantine equation is a multivariable equation like

For example, if p is the equation $3x^5 - xy + y^2 = 3$, $M(p)$ will:

For example, if p is the equation $3x^5 - xy + y^2 = 3$, $M(p)$ will: \star Check if $x = 0$, $y = 0$ is a solution. If not, \star Check if $x = 0$, $y = 1$ is a solution. If not, \star Check if $x = 1$, $y = 0$ is a solution. If not, \star Check if $x = 0, y = 2$ is a solution. If not, \star Check if $x = 1$, $y = 1$ is a solution. If not, \star Check if $x = 2$, $y = 0$ is a solution. If not, \star Check if $x = 0, y = 3$ is a solution. If not, \star Check if $x = 1, y = 2$ is a solution. If not, \star Check if $x = 2$, $y = 1$ is a solution. If not, \star Check if $x = 3$, $y = 0$ is a solution. If not, \star Check if $x = 0$, $y = 4$ is a solution. If not, \star Check if $x = 1$, $y = 3$ is a solution. If not, \star Check if $x = 2$, $y = 2$ is a solution. If not, \star Check if $x = 3$, $y = 1$ is a solution. If not, \star Check if $x = 4$, $y = 0$ is a solution. If not, \star Check if $x = 0, y = 5$ is a solution. If not, \star Check if $x = 1$, $y = 4$ is a solution. If not,

If $3x^5 - xy + y^2 = 3$ has a natural solution $(x, y) \in \mathbb{N}^2$, $M(p)$ will

If $3x^5 - xy + y^2 = 3$ has a natural solution $(x, y) \in \mathbb{N}^2$, $M(p)$ will eventually accept.

If $3x^5 - xy + y^2 = 3$ has a natural solution $(x, y) \in \mathbb{N}^2$, $M(p)$ will eventually accept.

If 3 $x^5 - xy + y^2 = 3$ has no natural solutions, $M(p)$ will

If $3x^5 - xy + y^2 = 3$ has a natural solution $(x, y) \in \mathbb{N}^2$, $M(p)$ will eventually accept.

If 3x⁵ – xy + y² = 3 has no natural solutions, $M(p)$ will run forever, i.e. loop.

Question: Why couldn't have $M(p)$ done the following sequence of checks, with p being the equation $3x^5 - ky + y^2 = 3$?

 \star Check if $x = 0$, $y = 0$ is a solution. If not,

$$
\star \ \text{Check if } x = 0, y = 1 \text{ is a solution. If not,}
$$

$$
\star \ \text{Check if } x = 0, y = 2 \text{ is a solution. If not,}
$$

$$
\star
$$
 Check if $x = 0, y = 3$ is a solution. If not,

$$
\star
$$
 Check if $x = 0, y = 4$ is a solution. If not,

$$
\star \text{ Check if } x = 0, y = 5 \text{ is a solution. If not,}
$$

$$
\star
$$
 Check if $x = 0, y = 6$ is a solution. If not,

$$
\star
$$
 Check if $x = 0, y = 7$ is a solution. If not,

$$
\star
$$
 Check if $x = 0, y = 8$ is a solution. If not,

$$
\star
$$
 Check if $x = 0, y = 9$ is a solution. If not,

$$
\star
$$
 Check if $x = 0$, $y = 10$ is a solution. If not,

$$
\star \text{ Check if } x = 0, y = 11 \text{ is a solution. If not,}
$$

$$
\star \ \text{Check if } x = 0, y = 12 \text{ is a solution. If not,}
$$

$$
\star \ \mathsf{Check} \ \text{if} \ x = 0, y = 13 \ \text{is a solution.} \ \ \mathsf{If} \ \mathsf{not},
$$

$$
\star \text{ Check if } x = 0, y = 14 \text{ is a solution. If not,}
$$

$$
\star
$$
 Check if $x = 0$, $y = 15$ is a solution. If not,

Another recognizable but not decidable language:

Another recognizable but not decidable language:

 $\star L = \{M \# x : M$ is a TM that halts on x $\}.$

Another recognizable but not decidable language:

 $\star L = \{M \# x : M$ is a TM that halts on x. This is known as the Halting problem.

Another recognizable but not decidable language:

 $\star L = \{M \# x : M$ is a TM that halts on x. This is known as the Halting problem.

Some non-recognizable languages:

Another recognizable but not decidable language:

 $\star L = \{M \# x : M$ is a TM that halts on x. This is known as the Halting problem.

Some non-recognizable languages:

 $\star L = \{M \# x : M$ is a TM that loops on x.

Another recognizable but not decidable language:

 \star $L = \{M \# x : M$ is a TM that halts on $x\}$. This is known as the Halting problem.

Some non-recognizable languages:

- $\star L = \{M \# x : M$ is a TM that loops on x.
- $\star L = \{M : M$ is a TM that halts on all inputs}.

Let L be a language.

Let L be a language. An enumerator for L is a program that accepts no input and:

Let L be a language. An enumerator for L is a program that accepts no input and:

 \star Eventually prints out w for every $w \in L$ (possibly with duplicates).

Let L be a language. An **enumerator** for L is a program that accepts no input and:

- \star Eventually prints out w for every $w \in L$ (possibly with duplicates).
- \star Never prints out anything other than strings in L.

Let L be a language. An **enumerator** for L is a program that accepts no input and:

- \star Eventually prints out w for every $w \in L$ (possibly with duplicates).
- \star Never prints out anything other than strings in L.

```
Example: the following program is an enumerator for the language
{0^n1^n : n \in \mathbb{N}}.
```

```
def enum():
 n = 0while True:
    print('0'*n + '1'*n)n \neq 1
```
Let L be a language. An **enumerator** for L is a program that accepts no input and:

- \star Eventually prints out w for every $w \in L$ (possibly with duplicates).
- \star Never prints out anything other than strings in L.

```
Example: the following program is an enumerator for the language
{0^n1^n : n \in \mathbb{N}}.
```

```
def enum():
 n = 0while True:
    print('0'*n + '1'*n)n \neq 1
```
Try running enum.py on your computer!

Here's something that might be useful. Remember to cite!

Here's something that might be useful. Remember to cite!

Theorem (Sipser 3.21)

A language L is recognizable if and only if it has an enumerator.

Here's something that might be useful. Remember to cite!

```
Theorem (Sipser 3.21)
```
A language L is recognizable if and only if it has an enumerator.

Proof. First, suppose L has an enumerator enum. Define M as follows:

```
M(x):
  run enum in the background
  while True:
    if enum has printed x:
      accept
```
Here's something that might be useful. Remember to cite!

```
Theorem (Sipser 3.21)
```
A language L is recognizable if and only if it has an enumerator.

Proof. First, suppose L has an enumerator enum. Define M as follows:

```
M(x):
  run enum in the background
  while True:
    if enum has printed x:
      accept
```
 \star If $x \in L$, then x is eventually printed by the enumerator, and $M(x)$ accepts.

Here's something that might be useful. Remember to cite!

```
Theorem (Sipser 3.21)
```
A language L is recognizable if and only if it has an enumerator.

Proof. First, suppose L has an enumerator enum. Define M as follows:

```
M(x):
  run enum in the background
  while True:
    if enum has printed x:
      accept
```
- \star If $x \in L$, then x is eventually printed by the enumerator, and $M(x)$ accepts.
- \star If $x \notin L$, then x is never printed, and $M(x)$ loops.
Here's something that might be useful. Remember to cite!

```
Theorem (Sipser 3.21)
```
A language L is recognizable if and only if it has an enumerator.

Proof. First, suppose L has an enumerator enum. Define M as follows:

```
M(x):
  run enum in the background
  while True:
    if enum has printed x:
      accept
```
 \star If $x \in L$, then x is eventually printed by the enumerator, and $M(x)$ accepts.

 \star If $x \notin L$, then x is never printed, and $M(x)$ loops.

Thus M recognizes L.

Here's something that might be useful. Remember to cite!

Theorem (Sipser 3.21)

A language L is recognizable if and only if it has an enumerator.

Proof. Now, suppose L has a recognizer M. Define enum as follows:

Here's something that might be useful. Remember to cite!

Theorem (Sipser 3.21)

A language L is recognizable if and only if it has an enumerator.

Proof. Now, suppose L has a recognizer M. Define enum as follows:

Here's something that might be useful. Remember to cite!

Theorem (Sipser 3.21)

A language L is recognizable if and only if it has an enumerator.

Proof. Now, suppose L has a recognizer M. Define enum as follows: enum(): $n = 0$

```
while True:
 for all strings w of length <= n:
      run M(w)if M(w) accepts:
          print(w)
 n \neq 1
```
Question: The above is not a valid enumerator of L. Why?

Here's something that might be useful. Remember to cite!

```
Theorem (Sipser 3.21)
```
A language L is recognizable if and only if it has an enumerator.

```
Proof. Now, suppose L has a recognizer M. Define enum as follows:
enum():
 n = 0while True:
```

```
for all strings w of length <= n:
    run M(w) for n steps
    if M(w) accepts:
        print(w)
n \neq 1
```
Task:

 \star Given any $w \notin L$, Why does enum() never print out w?

 \star Given any $w \in L$, Why does enum() eventually print out w?

Useful trick

```
enum():
 n = 0while True:
    for all strings w of length \leq n:
        run M(w) for n steps
        if M(w) accepts:
            print(w)
   n + = 1
```
This idea of "running for n steps, then increasing the maximum time allowed and trying again" is very useful in CSC363!