
CSC363 Tutorial #3
Decidable and Recognizable sets

February 1, 2023

1 / 20



Things covered in this tutorial

⋆ What’s a language?

⋆ What’s a decidable language? What’s a recognizable language?

⋆ How many synonyms are there for “decidable” and “recognizable”?

⋆ How do I show that something is decidable or recognizable?

⋆ What’s an enumerator?

⋆ Can I get a hint for A2? No, but you may cite these slides for your
homework. (You still have to prove everything.)1

1Citation: Paul “sjorv” Zhang. “Sussy Tutorial #3. Decidable and Recognizable
Sets.”.

EXTRACT MONEY FROM STUDENTS
Publishing, 2023.

2 / 20



Things covered in this tutorial

⋆ What’s a language?

⋆ What’s a decidable language? What’s a recognizable language?

⋆ How many synonyms are there for “decidable” and “recognizable”?

⋆ How do I show that something is decidable or recognizable?

⋆ What’s an enumerator?

⋆ Can I get a hint for A2? No, but you may cite these slides for your
homework. (You still have to prove everything.)1

1Citation: Paul “sjorv” Zhang. “Sussy Tutorial #3. Decidable and Recognizable
Sets.”.

EXTRACT MONEY FROM STUDENTS
Publishing, 2023.

2 / 20



Things covered in this tutorial

⋆ What’s a language?

⋆ What’s a decidable language? What’s a recognizable language?

⋆ How many synonyms are there for “decidable” and “recognizable”?

⋆ How do I show that something is decidable or recognizable?

⋆ What’s an enumerator?

⋆ Can I get a hint for A2? No, but you may cite these slides for your
homework. (You still have to prove everything.)1

1Citation: Paul “sjorv” Zhang. “Sussy Tutorial #3. Decidable and Recognizable
Sets.”.

EXTRACT MONEY FROM STUDENTS
Publishing, 2023.

2 / 20



Things covered in this tutorial

⋆ What’s a language?

⋆ What’s a decidable language? What’s a recognizable language?

⋆ How many synonyms are there for “decidable” and “recognizable”?

⋆ How do I show that something is decidable or recognizable?

⋆ What’s an enumerator?

⋆ Can I get a hint for A2? No, but you may cite these slides for your
homework. (You still have to prove everything.)1

1Citation: Paul “sjorv” Zhang. “Sussy Tutorial #3. Decidable and Recognizable
Sets.”.

EXTRACT MONEY FROM STUDENTS
Publishing, 2023.

2 / 20



Things covered in this tutorial

⋆ What’s a language?

⋆ What’s a decidable language? What’s a recognizable language?

⋆ How many synonyms are there for “decidable” and “recognizable”?

⋆ How do I show that something is decidable or recognizable?

⋆ What’s an enumerator?

⋆ Can I get a hint for A2? No, but you may cite these slides for your
homework. (You still have to prove everything.)1

1Citation: Paul “sjorv” Zhang. “Sussy Tutorial #3. Decidable and Recognizable
Sets.”.

EXTRACT MONEY FROM STUDENTS
Publishing, 2023.

2 / 20



Things covered in this tutorial

⋆ What’s a language?

⋆ What’s a decidable language? What’s a recognizable language?

⋆ How many synonyms are there for “decidable” and “recognizable”?

⋆ How do I show that something is decidable or recognizable?

⋆ What’s an enumerator?

⋆ Can I get a hint for A2?

No, but you may cite these slides for your
homework. (You still have to prove everything.)1

1Citation: Paul “sjorv” Zhang. “Sussy Tutorial #3. Decidable and Recognizable
Sets.”.

EXTRACT MONEY FROM STUDENTS
Publishing, 2023.

2 / 20



Things covered in this tutorial

⋆ What’s a language?

⋆ What’s a decidable language? What’s a recognizable language?

⋆ How many synonyms are there for “decidable” and “recognizable”?

⋆ How do I show that something is decidable or recognizable?

⋆ What’s an enumerator?

⋆ Can I get a hint for A2? No, but you may cite these slides for your
homework. (You still have to prove everything.)1

1Citation: Paul “sjorv” Zhang. “Sussy Tutorial #3. Decidable and Recognizable
Sets.”.

EXTRACT MONEY FROM STUDENTS
Publishing, 2023.

2 / 20



Turing Machines: Review

3 / 20



Turing Machines: Review

Let T be a Turing machine. Recall that given a string input w ∈ Σ∗, one
of the following will happen:

⋆ T (w) accepts, and outputs whatever is left on the tape.

⋆ T (w) rejects, and outputs whatever is left on the tape.

⋆ T (w) loops.

Church-Turing Thesis:
Anything that your computer can do, so can a Turing machine.

For this tutorial, we will use the Church-Turing Thesis to write
pseudocode instead of low-level TMs.

4 / 20



Turing Machines: Review

Let T be a Turing machine. Recall that given a string input w ∈ Σ∗, one
of the following will happen:

⋆ T (w) accepts, and outputs whatever is left on the tape.

⋆ T (w) rejects, and outputs whatever is left on the tape.

⋆ T (w) loops.

Church-Turing Thesis:
Anything that your computer can do, so can a Turing machine.

For this tutorial, we will use the Church-Turing Thesis to write
pseudocode instead of low-level TMs.

4 / 20



Turing Machines: Review

Let T be a Turing machine. Recall that given a string input w ∈ Σ∗, one
of the following will happen:

⋆ T (w) accepts, and outputs whatever is left on the tape.

⋆ T (w) rejects, and outputs whatever is left on the tape.

⋆ T (w) loops.

Church-Turing Thesis:
Anything that your computer can do, so can a Turing machine.

For this tutorial, we will use the Church-Turing Thesis to write
pseudocode instead of low-level TMs.

4 / 20



Turing Machines: Review

Let T be a Turing machine. Recall that given a string input w ∈ Σ∗, one
of the following will happen:

⋆ T (w) accepts, and outputs whatever is left on the tape.

⋆ T (w) rejects, and outputs whatever is left on the tape.

⋆ T (w) loops.

Church-Turing Thesis:
Anything that your computer can do, so can a Turing machine.

For this tutorial, we will use the Church-Turing Thesis to write
pseudocode instead of low-level TMs.

4 / 20



Turing Machines: Review

Let T be a Turing machine. Recall that given a string input w ∈ Σ∗, one
of the following will happen:

⋆ T (w) accepts, and outputs whatever is left on the tape.

⋆ T (w) rejects, and outputs whatever is left on the tape.

⋆ T (w) loops.

Church-Turing Thesis:
Anything that your computer can do, so can a Turing machine.

For this tutorial, we will use the Church-Turing Thesis to write
pseudocode instead of low-level TMs.

4 / 20



Turing Machines: Review

Let T be a Turing machine. Recall that given a string input w ∈ Σ∗, one
of the following will happen:

⋆ T (w) accepts, and outputs whatever is left on the tape.

⋆ T (w) rejects, and outputs whatever is left on the tape.

⋆ T (w) loops.

Church-Turing Thesis:
Anything that your computer can do, so can a Turing machine.

For this tutorial, we will use the Church-Turing Thesis to write
pseudocode instead of low-level TMs.

4 / 20



Languages
If you still remember from CSC263, recall what a language is.

Let Σ be an alphabet. Then Σ∗ is the set of all finite strings using
characters from Σ. A language is any subset of Σ∗.

5 / 20



Languages
If you still remember from CSC263, recall what a language is.

Let Σ be an alphabet. Then Σ∗ is the set of all finite strings using
characters from Σ.

A language is any subset of Σ∗.

5 / 20



Languages
If you still remember from CSC263, recall what a language is.

Let Σ be an alphabet. Then Σ∗ is the set of all finite strings using
characters from Σ. A language is any subset of Σ∗.

5 / 20



Decidable and Recognizable

Let L ⊆ Σ∗ be a language.

We say L is decidable if there is a Turing
machine M (called the decider) such that for any input s ∈ Σ∗:

⋆ If s ∈ L, then M accepts s.

⋆ If s /∈ L, then M rejects s.

We say L is recognizable if there is a Turing machine M (called the
recognizer) such that for any input s ∈ Σ∗:

⋆ If s ∈ L, then M accepts s.

⋆ If s /∈ L, then M rejects or loops on s.

Note the difference! M always has to halt in order to be a decider.

6 / 20



Decidable and Recognizable

Let L ⊆ Σ∗ be a language. We say L is decidable if there is a Turing
machine M (called the decider) such that for any input s ∈ Σ∗:

⋆ If s ∈ L, then M accepts s.

⋆ If s /∈ L, then M rejects s.

We say L is recognizable if there is a Turing machine M (called the
recognizer) such that for any input s ∈ Σ∗:

⋆ If s ∈ L, then M accepts s.

⋆ If s /∈ L, then M rejects or loops on s.

Note the difference! M always has to halt in order to be a decider.

6 / 20



Decidable and Recognizable

Let L ⊆ Σ∗ be a language. We say L is decidable if there is a Turing
machine M (called the decider) such that for any input s ∈ Σ∗:

⋆ If s ∈ L, then M accepts s.

⋆ If s /∈ L, then M rejects s.

We say L is recognizable if there is a Turing machine M (called the
recognizer) such that for any input s ∈ Σ∗:

⋆ If s ∈ L, then M accepts s.

⋆ If s /∈ L, then M rejects or loops on s.

Note the difference! M always has to halt in order to be a decider.

6 / 20



Decidable and Recognizable

Let L ⊆ Σ∗ be a language. We say L is decidable if there is a Turing
machine M (called the decider) such that for any input s ∈ Σ∗:

⋆ If s ∈ L, then M accepts s.

⋆ If s /∈ L, then M rejects s.

We say L is recognizable if there is a Turing machine M (called the
recognizer) such that for any input s ∈ Σ∗:

⋆ If s ∈ L, then M accepts s.

⋆ If s /∈ L, then M rejects or loops on s.

Note the difference! M always has to halt in order to be a decider.

6 / 20



Decidable and Recognizable

Let L ⊆ Σ∗ be a language. We say L is decidable if there is a Turing
machine M (called the decider) such that for any input s ∈ Σ∗:

⋆ If s ∈ L, then M accepts s.

⋆ If s /∈ L, then M rejects s.

We say L is recognizable if there is a Turing machine M (called the
recognizer) such that for any input s ∈ Σ∗:

⋆ If s ∈ L, then M accepts s.

⋆ If s /∈ L, then M rejects or loops on s.

Note the difference! M always has to halt in order to be a decider.

6 / 20



Decidable and Recognizable

Let L ⊆ Σ∗ be a language. We say L is decidable if there is a Turing
machine M (called the decider) such that for any input s ∈ Σ∗:

⋆ If s ∈ L, then M accepts s.

⋆ If s /∈ L, then M rejects s.

We say L is recognizable if there is a Turing machine M (called the
recognizer) such that for any input s ∈ Σ∗:

⋆ If s ∈ L, then M accepts s.

⋆ If s /∈ L, then M rejects or loops on s.

Note the difference! M always has to halt in order to be a decider.

6 / 20



Decidable and Recognizable

Let L ⊆ Σ∗ be a language. We say L is decidable if there is a Turing
machine M (called the decider) such that for any input s ∈ Σ∗:

⋆ If s ∈ L, then M accepts s.

⋆ If s /∈ L, then M rejects s.

We say L is recognizable if there is a Turing machine M (called the
recognizer) such that for any input s ∈ Σ∗:

⋆ If s ∈ L, then M accepts s.

⋆ If s /∈ L, then M rejects or loops on s.

Note the difference! M always has to halt in order to be a decider.

6 / 20



Decidable and Recognizable
Let L ⊆ Σ∗ be a language. We say L is decidable if there is a Turing
machine M (called the decider) such that for any input s ∈ Σ∗:

⋆ If s ∈ L, then M accepts s.

⋆ If s /∈ L, then M rejects s.

Example:

Let Σ = {0, 1}, and L = {0n1n : n ∈ N}.2 Show that L is
decidable.
Proof. The following is the pseudocode of a decider M for L:

M(w):

n = length(w)

if n is odd:

reject

for i in 0 to (n/2 - 1):

if w[n/2] != 0 or w[n/2 + i] != 1:

reject

accept
2That is, L = {ϵ, 01, 0011, 000111, . . .}.

7 / 20



Decidable and Recognizable
Let L ⊆ Σ∗ be a language. We say L is decidable if there is a Turing
machine M (called the decider) such that for any input s ∈ Σ∗:

⋆ If s ∈ L, then M accepts s.

⋆ If s /∈ L, then M rejects s.

Example: Let Σ = {0, 1}, and L = {0n1n : n ∈ N}.2 Show that L is
decidable.

Proof. The following is the pseudocode of a decider M for L:

M(w):

n = length(w)

if n is odd:

reject

for i in 0 to (n/2 - 1):

if w[n/2] != 0 or w[n/2 + i] != 1:

reject

accept

2That is, L = {ϵ, 01, 0011, 000111, . . .}.
7 / 20



Decidable and Recognizable
Let L ⊆ Σ∗ be a language. We say L is decidable if there is a Turing
machine M (called the decider) such that for any input s ∈ Σ∗:

⋆ If s ∈ L, then M accepts s.

⋆ If s /∈ L, then M rejects s.

Example: Let Σ = {0, 1}, and L = {0n1n : n ∈ N}.2 Show that L is
decidable.
Proof. The following is the pseudocode of a decider M for L:

M(w):

n = length(w)

if n is odd:

reject

for i in 0 to (n/2 - 1):

if w[n/2] != 0 or w[n/2 + i] != 1:

reject

accept

2That is, L = {ϵ, 01, 0011, 000111, . . .}.
7 / 20



Decidable and Recognizable
Let L ⊆ Σ∗ be a language. We say L is decidable if there is a Turing
machine M (called the decider) such that for any input s ∈ Σ∗:

⋆ If s ∈ L, then M accepts s.

⋆ If s /∈ L, then M rejects s.

Example: Let Σ = {0, 1}, and L = {0n1n : n ∈ N}.2 Show that L is
decidable.
Proof. The following is the pseudocode of a decider M for L:

M(w):

n = length(w)

if n is odd:

reject

for i in 0 to (n/2 - 1):

if w[n/2] != 0 or w[n/2 + i] != 1:

reject

accept
2That is, L = {ϵ, 01, 0011, 000111, . . .}.

7 / 20



Decidable and Recognizable

Decidable languages are also known as recursive languages.

Here are some synonyms for recognizable:

⋆ Listable.

⋆ Recursively enumerable (r.e.).

⋆ Computably enumerable (c.e.).

⋆ Partially decidable.

⋆ Σ0
1.

8 / 20



Decidable and Recognizable

Decidable languages are also known as recursive languages.

Here are some synonyms for recognizable:

⋆ Listable.

⋆ Recursively enumerable (r.e.).

⋆ Computably enumerable (c.e.).

⋆ Partially decidable.

⋆ Σ0
1.

8 / 20



Worksheet time!

Try doing Exercise -1. Here’s the definition of decidable again:

Let L ⊆ Σ∗ be a language. We say L is decidable if there is a Turing
machine M (called the decider) such that for any input s ∈ Σ∗:

⋆ If s ∈ L, then M accepts s.

⋆ If s /∈ L, then M rejects s.

If you are done, try Exercise 0 as well.

9 / 20



Worksheet time!

Try doing Exercise -1. Here’s the definition of decidable again:

Let L ⊆ Σ∗ be a language. We say L is decidable if there is a Turing
machine M (called the decider) such that for any input s ∈ Σ∗:

⋆ If s ∈ L, then M accepts s.

⋆ If s /∈ L, then M rejects s.

If you are done, try Exercise 0 as well.

9 / 20



Decidable Languages

Here are some more examples of decidable languages:

⋆ Any regular language.3

⋆ L = {w : Someone in this room has a credit card with number w}.
⋆ In fact, any finite language L is decidable!

⋆ L = {w : w is a grammatically correct English sentence}.
⋆ L = {w : w is a valid solution to the P vs NP problem}.

and (infinitely) many more!

Are there any non-decidable languages?

3Recall from CSC236 that regular language is a language that is decidable by a DFA.
10 / 20



Decidable Languages

Here are some more examples of decidable languages:

⋆ Any regular language.3

⋆ L = {w : Someone in this room has a credit card with number w}.
⋆ In fact, any finite language L is decidable!

⋆ L = {w : w is a grammatically correct English sentence}.
⋆ L = {w : w is a valid solution to the P vs NP problem}.

and (infinitely) many more!

Are there any non-decidable languages?

3Recall from CSC236 that regular language is a language that is decidable by a DFA.
10 / 20



Decidable Languages

Here are some more examples of decidable languages:

⋆ Any regular language.3

⋆ L = {w : Someone in this room has a credit card with number w}.

⋆ In fact, any finite language L is decidable!

⋆ L = {w : w is a grammatically correct English sentence}.
⋆ L = {w : w is a valid solution to the P vs NP problem}.

and (infinitely) many more!

Are there any non-decidable languages?

3Recall from CSC236 that regular language is a language that is decidable by a DFA.
10 / 20



Decidable Languages

Here are some more examples of decidable languages:

⋆ Any regular language.3

⋆ L = {w : Someone in this room has a credit card with number w}.
⋆ In fact, any finite language L is decidable!

⋆ L = {w : w is a grammatically correct English sentence}.
⋆ L = {w : w is a valid solution to the P vs NP problem}.

and (infinitely) many more!

Are there any non-decidable languages?

3Recall from CSC236 that regular language is a language that is decidable by a DFA.
10 / 20



Decidable Languages

Here are some more examples of decidable languages:

⋆ Any regular language.3

⋆ L = {w : Someone in this room has a credit card with number w}.
⋆ In fact, any finite language L is decidable!

⋆ L = {w : w is a grammatically correct English sentence}.

⋆ L = {w : w is a valid solution to the P vs NP problem}.
and (infinitely) many more!

Are there any non-decidable languages?

3Recall from CSC236 that regular language is a language that is decidable by a DFA.
10 / 20



Decidable Languages

Here are some more examples of decidable languages:

⋆ Any regular language.3

⋆ L = {w : Someone in this room has a credit card with number w}.
⋆ In fact, any finite language L is decidable!

⋆ L = {w : w is a grammatically correct English sentence}.
⋆ L = {w : w is a valid solution to the P vs NP problem}.

and (infinitely) many more!

Are there any non-decidable languages?

3Recall from CSC236 that regular language is a language that is decidable by a DFA.
10 / 20



Decidable Languages

Here are some more examples of decidable languages:

⋆ Any regular language.3

⋆ L = {w : Someone in this room has a credit card with number w}.
⋆ In fact, any finite language L is decidable!

⋆ L = {w : w is a grammatically correct English sentence}.
⋆ L = {w : w is a valid solution to the P vs NP problem}.

and (infinitely) many more!

Are there any non-decidable languages?

3Recall from CSC236 that regular language is a language that is decidable by a DFA.
10 / 20



Decidable Languages

Here are some more examples of decidable languages:

⋆ Any regular language.3

⋆ L = {w : Someone in this room has a credit card with number w}.
⋆ In fact, any finite language L is decidable!

⋆ L = {w : w is a grammatically correct English sentence}.
⋆ L = {w : w is a valid solution to the P vs NP problem}.

and (infinitely) many more!

Are there any non-decidable languages?

3Recall from CSC236 that regular language is a language that is decidable by a DFA.
10 / 20



Decidable Languages

Are there any non-decidable languages?

Yes.

L = {p : p is a Diophantine equation that has a natural solution}

is not decidable!4

Source: trust me bro.5

4Recall that a Diophantine equation is a multivariable equation like
x3 + 3xyz − w 420 = 2.

5You can look up “Hilbert’s tenth problem”.

11 / 20



Decidable Languages

Are there any non-decidable languages? Yes.

L = {p : p is a Diophantine equation that has a natural solution}

is not decidable!4

Source: trust me bro.5

4Recall that a Diophantine equation is a multivariable equation like
x3 + 3xyz − w 420 = 2.

5You can look up “Hilbert’s tenth problem”.

11 / 20



Decidable Languages

Are there any non-decidable languages? Yes.

L = {p : p is a Diophantine equation that has a natural solution}

is not decidable!4

Source: trust me bro.5

4Recall that a Diophantine equation is a multivariable equation like
x3 + 3xyz − w 420 = 2.

5You can look up “Hilbert’s tenth problem”.
11 / 20



Recognizable Languages

L = {p : p is a Diophantine equation that has a natural solution}
is not decidable!6

L is recognizable though.

Source:

M(p):

if p isn’t a valid Diophantine equation:

reject

n = number of variables in p

s = 0

while True:

for all x1, x2, ..., xn

with x1 + x2 + ... + xn = s:

if (x1, x2, ... xn) is a solution to p:

accept

s += 1

6Recall that a Diophantine equation is a multivariable equation like
x3 + 3xyz − w 420 = 2.

12 / 20



Recognizable Languages

L = {p : p is a Diophantine equation that has a natural solution}
is not decidable!6 L is recognizable though.

Source:

M(p):

if p isn’t a valid Diophantine equation:

reject

n = number of variables in p

s = 0

while True:

for all x1, x2, ..., xn

with x1 + x2 + ... + xn = s:

if (x1, x2, ... xn) is a solution to p:

accept

s += 1

6Recall that a Diophantine equation is a multivariable equation like
x3 + 3xyz − w 420 = 2.

12 / 20



Recognizable Languages

L = {p : p is a Diophantine equation that has a natural solution}
is not decidable!6 L is recognizable though.

Source:

M(p):

if p isn’t a valid Diophantine equation:

reject

n = number of variables in p

s = 0

while True:

for all x1, x2, ..., xn

with x1 + x2 + ... + xn = s:

if (x1, x2, ... xn) is a solution to p:

accept

s += 1

6Recall that a Diophantine equation is a multivariable equation like
x3 + 3xyz − w 420 = 2.

12 / 20



Recognizable Languages
For example, if p is the equation 3x5 − xy + y2 = 3, M(p) will:

⋆ Check if x = 0, y = 0 is a solution. If not,
⋆ Check if x = 0, y = 1 is a solution. If not,
⋆ Check if x = 1, y = 0 is a solution. If not,
⋆ Check if x = 0, y = 2 is a solution. If not,
⋆ Check if x = 1, y = 1 is a solution. If not,
⋆ Check if x = 2, y = 0 is a solution. If not,
⋆ Check if x = 0, y = 3 is a solution. If not,
⋆ Check if x = 1, y = 2 is a solution. If not,
⋆ Check if x = 2, y = 1 is a solution. If not,
⋆ Check if x = 3, y = 0 is a solution. If not,
⋆ Check if x = 0, y = 4 is a solution. If not,
⋆ Check if x = 1, y = 3 is a solution. If not,
⋆ Check if x = 2, y = 2 is a solution. If not,
⋆ Check if x = 3, y = 1 is a solution. If not,
⋆ Check if x = 4, y = 0 is a solution. If not,
⋆ Check if x = 0, y = 5 is a solution. If not,
⋆ Check if x = 1, y = 4 is a solution. If not,
⋆ Check if x = 2, y = 3 is a solution. If not,
⋆ Check if x = 3, y = 2 is a solution. If not,
⋆ Check if x = 2, y = 1 is a solution. If not,

13 / 20



Recognizable Languages
For example, if p is the equation 3x5 − xy + y2 = 3, M(p) will:

⋆ Check if x = 0, y = 0 is a solution. If not,
⋆ Check if x = 0, y = 1 is a solution. If not,
⋆ Check if x = 1, y = 0 is a solution. If not,
⋆ Check if x = 0, y = 2 is a solution. If not,
⋆ Check if x = 1, y = 1 is a solution. If not,
⋆ Check if x = 2, y = 0 is a solution. If not,
⋆ Check if x = 0, y = 3 is a solution. If not,
⋆ Check if x = 1, y = 2 is a solution. If not,
⋆ Check if x = 2, y = 1 is a solution. If not,
⋆ Check if x = 3, y = 0 is a solution. If not,
⋆ Check if x = 0, y = 4 is a solution. If not,
⋆ Check if x = 1, y = 3 is a solution. If not,
⋆ Check if x = 2, y = 2 is a solution. If not,
⋆ Check if x = 3, y = 1 is a solution. If not,
⋆ Check if x = 4, y = 0 is a solution. If not,
⋆ Check if x = 0, y = 5 is a solution. If not,
⋆ Check if x = 1, y = 4 is a solution. If not,
⋆ Check if x = 2, y = 3 is a solution. If not,
⋆ Check if x = 3, y = 2 is a solution. If not,
⋆ Check if x = 2, y = 1 is a solution. If not,

13 / 20



Recognizable Languages

If 3x5 − xy + y2 = 3 has a natural solution (x , y) ∈ N2, M(p) will

eventually accept.

If 3x5 − xy + y2 = 3 has no natural solutions, M(p) will run forever, i.e.
loop.

14 / 20



Recognizable Languages

If 3x5 − xy + y2 = 3 has a natural solution (x , y) ∈ N2, M(p) will
eventually accept.

If 3x5 − xy + y2 = 3 has no natural solutions, M(p) will run forever, i.e.
loop.

14 / 20



Recognizable Languages

If 3x5 − xy + y2 = 3 has a natural solution (x , y) ∈ N2, M(p) will
eventually accept.

If 3x5 − xy + y2 = 3 has no natural solutions, M(p) will

run forever, i.e.
loop.

14 / 20



Recognizable Languages

If 3x5 − xy + y2 = 3 has a natural solution (x , y) ∈ N2, M(p) will
eventually accept.

If 3x5 − xy + y2 = 3 has no natural solutions, M(p) will run forever, i.e.
loop.

14 / 20



Recognizable Languages
Question: Why couldn’t have M(p) done the following sequence of
checks, with p being the equation 3x5 − ky + y2 = 3?

⋆ Check if x = 0, y = 0 is a solution. If not,
⋆ Check if x = 0, y = 1 is a solution. If not,
⋆ Check if x = 0, y = 2 is a solution. If not,
⋆ Check if x = 0, y = 3 is a solution. If not,
⋆ Check if x = 0, y = 4 is a solution. If not,
⋆ Check if x = 0, y = 5 is a solution. If not,
⋆ Check if x = 0, y = 6 is a solution. If not,
⋆ Check if x = 0, y = 7 is a solution. If not,
⋆ Check if x = 0, y = 8 is a solution. If not,
⋆ Check if x = 0, y = 9 is a solution. If not,
⋆ Check if x = 0, y = 10 is a solution. If not,
⋆ Check if x = 0, y = 11 is a solution. If not,
⋆ Check if x = 0, y = 12 is a solution. If not,
⋆ Check if x = 0, y = 13 is a solution. If not,
⋆ Check if x = 0, y = 14 is a solution. If not,
⋆ Check if x = 0, y = 15 is a solution. If not,
⋆ Check if x = 0, y = 16 is a solution. If not,
⋆ Check if x = 0, y = 17 is a solution. If not,
⋆ Check if x = 0, y = 18 is a solution. If not,
⋆ Check if x = 0, y = 19 is a solution. If not,

15 / 20



Recognizable Languages

Another recognizable but not decidable language:

⋆ L = {M#x : M is a TM that halts on x}. This is known as the
Halting problem.

Some non-recognizable languages:

⋆ L = {M#x : M is a TM that loops on x}.
⋆ L = {M : M is a TM that halts on all inputs}.

16 / 20



Recognizable Languages

Another recognizable but not decidable language:

⋆ L = {M#x : M is a TM that halts on x}.

This is known as the
Halting problem.

Some non-recognizable languages:

⋆ L = {M#x : M is a TM that loops on x}.
⋆ L = {M : M is a TM that halts on all inputs}.

16 / 20



Recognizable Languages

Another recognizable but not decidable language:

⋆ L = {M#x : M is a TM that halts on x}. This is known as the
Halting problem.

Some non-recognizable languages:

⋆ L = {M#x : M is a TM that loops on x}.
⋆ L = {M : M is a TM that halts on all inputs}.

16 / 20



Recognizable Languages

Another recognizable but not decidable language:

⋆ L = {M#x : M is a TM that halts on x}. This is known as the
Halting problem.

Some non-recognizable languages:

⋆ L = {M#x : M is a TM that loops on x}.
⋆ L = {M : M is a TM that halts on all inputs}.

16 / 20



Recognizable Languages

Another recognizable but not decidable language:

⋆ L = {M#x : M is a TM that halts on x}. This is known as the
Halting problem.

Some non-recognizable languages:

⋆ L = {M#x : M is a TM that loops on x}.

⋆ L = {M : M is a TM that halts on all inputs}.

16 / 20



Recognizable Languages

Another recognizable but not decidable language:

⋆ L = {M#x : M is a TM that halts on x}. This is known as the
Halting problem.

Some non-recognizable languages:

⋆ L = {M#x : M is a TM that loops on x}.
⋆ L = {M : M is a TM that halts on all inputs}.

16 / 20



Enumerators (possibly useful for assignment!)

Let L be a language. An enumerator for L is a program that accepts no
input and:

⋆ Eventually prints out w for every w ∈ L (possibly with duplicates).

⋆ Never prints out anything other than strings in L.

Example: the following program is an enumerator for the language
{0n1n : n ∈ N}.

def enum():

n = 0

while True:

print(’0’*n + ’1’*n)

n += 1

Try running enum.py on your computer!

17 / 20



Enumerators (possibly useful for assignment!)

Let L be a language.

An enumerator for L is a program that accepts no
input and:

⋆ Eventually prints out w for every w ∈ L (possibly with duplicates).

⋆ Never prints out anything other than strings in L.

Example: the following program is an enumerator for the language
{0n1n : n ∈ N}.

def enum():

n = 0

while True:

print(’0’*n + ’1’*n)

n += 1

Try running enum.py on your computer!

17 / 20



Enumerators (possibly useful for assignment!)

Let L be a language. An enumerator for L is a program that accepts no
input and:

⋆ Eventually prints out w for every w ∈ L (possibly with duplicates).

⋆ Never prints out anything other than strings in L.

Example: the following program is an enumerator for the language
{0n1n : n ∈ N}.

def enum():

n = 0

while True:

print(’0’*n + ’1’*n)

n += 1

Try running enum.py on your computer!

17 / 20



Enumerators (possibly useful for assignment!)

Let L be a language. An enumerator for L is a program that accepts no
input and:

⋆ Eventually prints out w for every w ∈ L (possibly with duplicates).

⋆ Never prints out anything other than strings in L.

Example: the following program is an enumerator for the language
{0n1n : n ∈ N}.

def enum():

n = 0

while True:

print(’0’*n + ’1’*n)

n += 1

Try running enum.py on your computer!

17 / 20



Enumerators (possibly useful for assignment!)

Let L be a language. An enumerator for L is a program that accepts no
input and:

⋆ Eventually prints out w for every w ∈ L (possibly with duplicates).

⋆ Never prints out anything other than strings in L.

Example: the following program is an enumerator for the language
{0n1n : n ∈ N}.

def enum():

n = 0

while True:

print(’0’*n + ’1’*n)

n += 1

Try running enum.py on your computer!

17 / 20



Enumerators (possibly useful for assignment!)

Let L be a language. An enumerator for L is a program that accepts no
input and:

⋆ Eventually prints out w for every w ∈ L (possibly with duplicates).

⋆ Never prints out anything other than strings in L.

Example: the following program is an enumerator for the language
{0n1n : n ∈ N}.

def enum():

n = 0

while True:

print(’0’*n + ’1’*n)

n += 1

Try running enum.py on your computer!

17 / 20



Enumerators (possibly useful for assignment!)

Let L be a language. An enumerator for L is a program that accepts no
input and:

⋆ Eventually prints out w for every w ∈ L (possibly with duplicates).

⋆ Never prints out anything other than strings in L.

Example: the following program is an enumerator for the language
{0n1n : n ∈ N}.

def enum():

n = 0

while True:

print(’0’*n + ’1’*n)

n += 1

Try running enum.py on your computer!

17 / 20



Enumerators (possibly useful for assignment!)

Here’s something that might be useful. Remember to cite!

Theorem (Sipser 3.21)

A language L is recognizable if and only if it has an enumerator.

Proof. First, suppose L has an enumerator enum. Define M as follows:

M(x):

run enum in the background

while True:

if enum has printed x:

accept

⋆ If x ∈ L, then x is eventually printed by the enumerator, and M(x)
accepts.

⋆ If x /∈ L, then x is never printed, and M(x) loops.

Thus M recognizes L.

18 / 20



Enumerators (possibly useful for assignment!)

Here’s something that might be useful. Remember to cite!

Theorem (Sipser 3.21)

A language L is recognizable if and only if it has an enumerator.

Proof. First, suppose L has an enumerator enum. Define M as follows:

M(x):

run enum in the background

while True:

if enum has printed x:

accept

⋆ If x ∈ L, then x is eventually printed by the enumerator, and M(x)
accepts.

⋆ If x /∈ L, then x is never printed, and M(x) loops.

Thus M recognizes L.

18 / 20



Enumerators (possibly useful for assignment!)

Here’s something that might be useful. Remember to cite!

Theorem (Sipser 3.21)

A language L is recognizable if and only if it has an enumerator.

Proof. First, suppose L has an enumerator enum. Define M as follows:

M(x):

run enum in the background

while True:

if enum has printed x:

accept

⋆ If x ∈ L, then x is eventually printed by the enumerator, and M(x)
accepts.

⋆ If x /∈ L, then x is never printed, and M(x) loops.

Thus M recognizes L.

18 / 20



Enumerators (possibly useful for assignment!)

Here’s something that might be useful. Remember to cite!

Theorem (Sipser 3.21)

A language L is recognizable if and only if it has an enumerator.

Proof. First, suppose L has an enumerator enum. Define M as follows:

M(x):

run enum in the background

while True:

if enum has printed x:

accept

⋆ If x ∈ L, then x is eventually printed by the enumerator, and M(x)
accepts.

⋆ If x /∈ L, then x is never printed, and M(x) loops.

Thus M recognizes L.

18 / 20



Enumerators (possibly useful for assignment!)

Here’s something that might be useful. Remember to cite!

Theorem (Sipser 3.21)

A language L is recognizable if and only if it has an enumerator.

Proof. First, suppose L has an enumerator enum. Define M as follows:

M(x):

run enum in the background

while True:

if enum has printed x:

accept

⋆ If x ∈ L, then x is eventually printed by the enumerator, and M(x)
accepts.

⋆ If x /∈ L, then x is never printed, and M(x) loops.

Thus M recognizes L.

18 / 20



Enumerators (possibly useful for assignment!)

Here’s something that might be useful. Remember to cite!

Theorem (Sipser 3.21)

A language L is recognizable if and only if it has an enumerator.

Proof. First, suppose L has an enumerator enum. Define M as follows:

M(x):

run enum in the background

while True:

if enum has printed x:

accept

⋆ If x ∈ L, then x is eventually printed by the enumerator, and M(x)
accepts.

⋆ If x /∈ L, then x is never printed, and M(x) loops.

Thus M recognizes L.

18 / 20



Enumerators (possibly useful for assignment!)

Here’s something that might be useful. Remember to cite!

Theorem (Sipser 3.21)

A language L is recognizable if and only if it has an enumerator.

Proof. Now, suppose L has a recognizer M. Define enum as follows:

Task:

⋆ Given any w /∈ L, Why does enum() never print out w?

⋆ Given any w ∈ L, Why does enum() eventually print out w?

19 / 20



Enumerators (possibly useful for assignment!)

Here’s something that might be useful. Remember to cite!

Theorem (Sipser 3.21)

A language L is recognizable if and only if it has an enumerator.

Proof. Now, suppose L has a recognizer M. Define enum as follows:

Task:

⋆ Given any w /∈ L, Why does enum() never print out w?

⋆ Given any w ∈ L, Why does enum() eventually print out w?

19 / 20



Enumerators (possibly useful for assignment!)
Here’s something that might be useful. Remember to cite!

Theorem (Sipser 3.21)

A language L is recognizable if and only if it has an enumerator.

Proof. Now, suppose L has a recognizer M. Define enum as follows:

enum():

n = 0

while True:

for all strings w of length <= n:

run M(w)

if M(w) accepts:

print(w)

n += 1

Question: The above is not a valid enumerator of L. Why?

Task:

⋆ Given any w /∈ L, Why does enum() never print out w?
⋆ Given any w ∈ L, Why does enum() eventually print out w?

19 / 20



Enumerators (possibly useful for assignment!)
Here’s something that might be useful. Remember to cite!

Theorem (Sipser 3.21)

A language L is recognizable if and only if it has an enumerator.

Proof. Now, suppose L has a recognizer M. Define enum as follows:

enum():

n = 0

while True:

for all strings w of length <= n:

run M(w) for n steps

if M(w) accepts:

print(w)

n += 1

Task:

⋆ Given any w /∈ L, Why does enum() never print out w?

⋆ Given any w ∈ L, Why does enum() eventually print out w?
19 / 20



Useful trick

enum():

n = 0

while True:

for all strings w of length <= n:

run M(w) for n steps

if M(w) accepts:

print(w)

n += 1

This idea of “running for n steps, then increasing the maximum time
allowed and trying again” is very useful in CSC363!

20 / 20


