CSC363 Tutorial #3 Decidable and Recognizable sets

February 1, 2023

* What's a language?

 $\star\,$ What's a language?

 $\star\,$ What's a decidable language? What's a recognizable language?

- * What's a language?
- * What's a decidable language? What's a recognizable language?
- $\star\,$ How many synonyms are there for "decidable" and "recognizable"?

- * What's a language?
- * What's a decidable language? What's a recognizable language?
- $\star\,$ How many synonyms are there for "decidable" and "recognizable"?
- * How do I show that something is decidable or recognizable?

- * What's a language?
- * What's a decidable language? What's a recognizable language?
- $\star\,$ How many synonyms are there for "decidable" and "recognizable"?
- * How do I show that something is decidable or recognizable?
- * What's an enumerator?
- * Can I get a hint for A2?

- * What's a language?
- $\star\,$ What's a decidable language? What's a recognizable language?
- * How many synonyms are there for "decidable" and "recognizable"?
- * How do I show that something is decidable or recognizable?
- * What's an enumerator?
- \star Can I get a hint for A2? No, but you may cite these slides for your homework. (You still have to prove everything.)¹

¹Citation: Paul "sjorv" Zhang. "Sussy Tutorial #3. Decidable and Recognizable Sets.". EXTRACT_MONEY_FROM_STUDENTS Publishing, 2023.

Let T be a Turing machine. Recall that given a string input $w \in \Sigma^*$, one of the following will happen:

Let T be a Turing machine. Recall that given a string input $w \in \Sigma^*$, one of the following will happen:

 \star T(w) accepts, and outputs whatever is left on the tape.

Let T be a Turing machine. Recall that given a string input $w \in \Sigma^*$, one of the following will happen:

- * T(w) accepts, and outputs whatever is left on the tape.
- * T(w) rejects, and outputs whatever is left on the tape.

Let T be a Turing machine. Recall that given a string input $w \in \Sigma^*$, one of the following will happen:

- * T(w) accepts, and outputs whatever is left on the tape.
- * T(w) rejects, and outputs whatever is left on the tape.
- * T(w) loops.

Let T be a Turing machine. Recall that given a string input $w \in \Sigma^*$, one of the following will happen:

- * T(w) accepts, and outputs whatever is left on the tape.
- * T(w) rejects, and outputs whatever is left on the tape.
- * T(w) loops.

Church-Turing Thesis:

Anything that your computer can do, so can a Turing machine.

Let T be a Turing machine. Recall that given a string input $w \in \Sigma^*$, one of the following will happen:

- * T(w) accepts, and outputs whatever is left on the tape.
- * T(w) rejects, and outputs whatever is left on the tape.
- * T(w) loops.

Church-Turing Thesis:

Anything that your computer can do, so can a Turing machine.

For this tutorial, we will use the Church-Turing Thesis to write pseudocode instead of low-level TMs.

Languages

If you still remember from CSC263, recall what a *language* is.

Languages

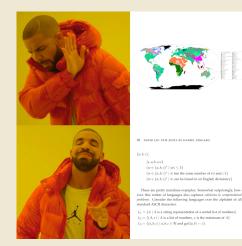
If you still remember from CSC263, recall what a *language* is.

Let Σ be an alphabet. Then Σ^* is the set of all finite strings using characters from $\Sigma.$

Languages

If you still remember from CSC263, recall what a language is.

Let Σ be an alphabet. Then Σ^* is the set of all finite strings using characters from Σ . A language is any subset of Σ^* .



Let $L \subseteq \Sigma^*$ be a language.

Let $L \subseteq \Sigma^*$ be a language. We say L is decidable if there is a Turing machine M (called the decider) such that for any input $s \in \Sigma^*$:

Let $L \subseteq \Sigma^*$ be a language. We say L is decidable if there is a Turing machine M (called the decider) such that for any input $s \in \Sigma^*$: \star If $s \in L$, then M accepts s.

Let $L \subseteq \Sigma^*$ be a language. We say L is decidable if there is a Turing machine M (called the decider) such that for any input $s \in \Sigma^*$:

* If $s \in L$, then M accepts s.

* If $s \notin L$, then *M* rejects *s*.

Let $L \subseteq \Sigma^*$ be a language. We say L is decidable if there is a Turing machine M (called the decider) such that for any input $s \in \Sigma^*$:

* If $s \in L$, then M accepts s.

* If $s \notin L$, then *M* rejects *s*.

Let $L \subseteq \Sigma^*$ be a language. We say L is decidable if there is a Turing machine M (called the decider) such that for any input $s \in \Sigma^*$:

- * If $s \in L$, then M accepts s.
- * If $s \notin L$, then *M* rejects *s*.

We say *L* is recognizable if there is a Turing machine *M* (called the recognizer) such that for any input $s \in \Sigma^*$:

```
* If s \in L, then M accepts s.
```

* If $s \notin L$, then *M* rejects or loops on *s*.

Let $L \subseteq \Sigma^*$ be a language. We say L is decidable if there is a Turing machine M (called the decider) such that for any input $s \in \Sigma^*$:

- * If $s \in L$, then M accepts s.
- * If $s \notin L$, then *M* rejects *s*.

We say *L* is recognizable if there is a Turing machine *M* (called the recognizer) such that for any input $s \in \Sigma^*$:

- * If $s \in L$, then M accepts s.
- * If $s \notin L$, then *M* rejects or loops on *s*.

Note the difference! *M* always has to halt in order to be a decider.

Let $L \subseteq \Sigma^*$ be a language. We say L is decidable if there is a Turing machine M (called the decider) such that for any input $s \in \Sigma^*$:

* If $s \in L$, then M accepts s.

* If $s \notin L$, then *M* rejects *s*.

Example:

Let $L \subseteq \Sigma^*$ be a language. We say L is decidable if there is a Turing machine M (called the decider) such that for any input $s \in \Sigma^*$:

* If $s \in L$, then M accepts s.

* If $s \notin L$, then *M* rejects *s*.

Example: Let $\Sigma = \{0, 1\}$, and $L = \{0^n 1^n : n \in \mathbb{N}\}$.² Show that L is decidable.

²That is, $L = \{\epsilon, 01, 0011, 000111, \ldots\}$.

Let $L \subseteq \Sigma^*$ be a language. We say L is decidable if there is a Turing machine M (called the decider) such that for any input $s \in \Sigma^*$:

* If $s \in L$, then M accepts s.

* If $s \notin L$, then *M* rejects *s*.

Example: Let $\Sigma = \{0, 1\}$, and $L = \{0^n 1^n : n \in \mathbb{N}\}$.² Show that *L* is decidable.

Proof. The following is the pseudocode of a decider M for L:

²That is, $L = \{\epsilon, 01, 0011, 000111, \ldots\}$.

Let $L \subseteq \Sigma^*$ be a language. We say L is decidable if there is a Turing machine M (called the decider) such that for any input $s \in \Sigma^*$:

 \star If $s \in L$, then M accepts s.

* If $s \notin L$, then *M* rejects *s*.

```
Example: Let \Sigma = \{0, 1\}, and L = \{0^n 1^n : n \in \mathbb{N}\}.<sup>2</sup> Show that L is
decidable.
Proof. The following is the pseudocode of a decider M for L:
M(w):
  n = length(w)
   if n is odd:
     reject
  for i in 0 to (n/2 - 1):
     if w[n/2] != 0 or w[n/2 + i] != 1:
        reject
   accept
   <sup>2</sup>That is, L = \{\epsilon, 01, 0011, 000111, \ldots\}.
```

Decidable languages are also known as recursive languages.

Decidable languages are also known as recursive languages.

Here are some synonyms for recognizable:

- * Listable.
- * Recursively enumerable (r.e.).
- * Computably enumerable (c.e.).
- * Partially decidable.
- $\star \ \Sigma_1^0.$

Worksheet time!

Try doing Exercise -1. Here's the definition of *decidable* again:

Let $L \subseteq \Sigma^*$ be a language. We say L is decidable if there is a Turing machine M (called the decider) such that for any input $s \in \Sigma^*$:

Worksheet time!

Try doing Exercise -1. Here's the definition of *decidable* again:

Let $L \subseteq \Sigma^*$ be a language. We say L is **decidable** if there is a Turing machine M (called the **decider**) such that for any input $s \in \Sigma^*$:

* If $s \in L$, then M accepts s.

★ If $s \notin L$, then *M* rejects *s*.

If you are done, try Exercise 0 as well.

Decidable Languages

Here are some more examples of decidable languages:

 3 Recall from CSC236 that regular language is a language that is decidable by a DFA. $^{10/20}$

Decidable Languages

Here are some more examples of decidable languages:

 \star Any regular language.³

 3 Recall from CSC236 that regular language is a language that is decidable by a DFA.

Decidable Languages

Here are some more examples of decidable languages:

- \star Any regular language.³
- * $L = \{w : \text{Someone in this room has a credit card with number } w\}$.

 $^{^{3}}$ Recall from CSC236 that regular language is a language that is decidable by a DFA. $^{10/20}$

Here are some more examples of decidable languages:

- * Any regular language.³
- * $L = \{w : \text{Someone in this room has a credit card with number } w\}$.
- \star In fact, any finite language L is decidable!

 3 Recall from CSC236 that regular language is a language that is decidable by a DFA. $^{10/20}$

Here are some more examples of decidable languages:

- * Any regular language.³
- * $L = \{w : \text{Someone in this room has a credit card with number } w\}.$
- \star In fact, any finite language L is decidable!
- * $L = \{w : w \text{ is a grammatically correct English sentence}\}.$

³Recall from CSC236 that regular language is a language that is decidable by a DFA. 10/20

Here are some more examples of decidable languages:

- * Any regular language.³
- * $L = \{w : \text{Someone in this room has a credit card with number } w\}.$
- \star In fact, any finite language L is decidable!
- * $L = \{w : w \text{ is a grammatically correct English sentence}\}.$
- * $L = \{w : w \text{ is a valid solution to the P vs NP problem}\}.$

³Recall from CSC236 that regular language is a language that is decidable by a DFA. 10/20

Here are some more examples of decidable languages:

- * Any regular language.³
- * $L = \{w : \text{Someone in this room has a credit card with number } w\}$.
- \star In fact, any finite language L is decidable!
- * $L = \{w : w \text{ is a grammatically correct English sentence}\}.$
- * $L = \{w : w \text{ is a valid solution to the P vs NP problem}\}.$ and (infinitely) many more!

³Recall from CSC236 that regular language is a language that is decidable by a DFA.

Here are some more examples of decidable languages:

- * Any regular language.³
- * $L = \{w : \text{Someone in this room has a credit card with number } w\}$.
- \star In fact, any finite language L is decidable!
- * $L = \{w : w \text{ is a grammatically correct English sentence}\}.$
- * $L = \{w : w \text{ is a valid solution to the P vs NP problem}\}.$ and (infinitely) many more!

Are there any non-decidable languages?

³Recall from CSC236 that regular language is a language that is decidable by a DFA.

Are there any non-decidable languages?

⁴Recall that a Diophantine equation is a multivariable equation like $x^3 + 3xyz - w^{420} = 2$.

Are there any non-decidable languages? Yes.

 $L = \{p : p \text{ is a Diophantine equation that has a natural solution}\}$

is not decidable!⁴

⁴Recall that a Diophantine equation is a multivariable equation like $x^3 + 3xyz - w^{420} = 2$.

Are there any non-decidable languages? Yes.

 $L = \{p : p \text{ is a Diophantine equation that has a natural solution}\}$

is not decidable!⁴

Source: trust me bro.⁵

⁵You can look up "Hilbert's tenth problem".

⁴Recall that a Diophantine equation is a multivariable equation like $x^3 + 3xyz - w^{420} = 2$.

 $L = \{p : p \text{ is a Diophantine equation that has a natural solution}\}$ is not decidable!⁶

⁶Recall that a Diophantine equation is a multivariable equation like

 $L = \{p : p \text{ is a Diophantine equation that has a natural solution}\}$ is not decidable!⁶ L is recognizable though.

⁶Recall that a Diophantine equation is a multivariable equation like

 $L = \{p : p \text{ is a Diophantine equation that has a natural solution}\}$ is not decidable!⁶ L is recognizable though.

Source:

```
M(p):
  if p isn't a valid Diophantine equation:
    reject
  n = number of variables in p
  s = 0
  while True:
    for all x1, x2, ..., xn
    with x1 + x2 + ... + xn = s:
      if (x1, x2, \ldots xn) is a solution to p:
        accept
      s += 1
```

⁶Recall that a Diophantine equation is a multivariable equation like

For example, if p is the equation $3x^5 - xy + y^2 = 3$, M(p) will:

For example, if p is the equation $3x^5 - xy + y^2 = 3$, M(p) will: * Check if x = 0, y = 0 is a solution. If not, * Check if x = 0, y = 1 is a solution. If not, * Check if x = 1, y = 0 is a solution. If not, * Check if x = 0, y = 2 is a solution. If not, * Check if x = 1, y = 1 is a solution. If not, * Check if x = 2, y = 0 is a solution. If not, * Check if x = 0, y = 3 is a solution. If not, * Check if x = 1, y = 2 is a solution. If not, * Check if x = 2, y = 1 is a solution. If not, * Check if x = 3, y = 0 is a solution. If not, * Check if x = 0, y = 4 is a solution. If not, * Check if x = 1, y = 3 is a solution. If not, * Check if x = 2, y = 2 is a solution. If not, * Check if x = 3, y = 1 is a solution. If not, * Check if x = 4, y = 0 is a solution. If not, * Check if x = 0, y = 5 is a solution. If not, * Check if x = 1, y = 4 is a solution. If not,

If $3x^5 - xy + y^2 = 3$ has a natural solution $(x, y) \in \mathbb{N}^2$, M(p) will

If $3x^5 - xy + y^2 = 3$ has a natural solution $(x, y) \in \mathbb{N}^2$, M(p) will eventually accept.

If $3x^5 - xy + y^2 = 3$ has a natural solution $(x, y) \in \mathbb{N}^2$, M(p) will eventually accept.

If $3x^5 - xy + y^2 = 3$ has no natural solutions, M(p) will

If $3x^5 - xy + y^2 = 3$ has a natural solution $(x, y) \in \mathbb{N}^2$, M(p) will eventually accept.

If $3x^5 - xy + y^2 = 3$ has no natural solutions, M(p) will run forever, i.e. loop.

Question: Why couldn't have M(p) done the following sequence of checks, with *p* being the equation $3x^5 - ky + y^2 = 3$?

* Check if x = 0, y = 0 is a solution. If not,

* Check if
$$x = 0, y = 1$$
 is a solution. If not,

* Check if
$$x = 0, y = 2$$
 is a solution. If not,

* Check if
$$x = 0, y = 3$$
 is a solution. If not,

* Check if
$$x = 0, y = 4$$
 is a solution. If not,

* Check if
$$x = 0, y = 5$$
 is a solution. If not,

* Check if
$$x = 0, y = 6$$
 is a solution. If not,

* Check if
$$x = 0, y = 7$$
 is a solution. If not,

* Check if
$$x = 0, y = 8$$
 is a solution. If not,

* Check if
$$x = 0, y = 9$$
 is a solution. If not,

* Check if
$$x = 0, y = 10$$
 is a solution. If not,

* Check if
$$x = 0, y = 11$$
 is a solution. If not

* Check if
$$x = 0, y = 12$$
 is a solution. If not,

* Check if
$$x = 0, y = 13$$
 is a solution. If not,

* Check if
$$x = 0, y = 14$$
 is a solution. If not,

* Check if
$$x = 0, y = 15$$
 is a solution. If not,

Another recognizable but not decidable language:

Another recognizable but not decidable language:

* $L = \{M \# x : M \text{ is a TM that halts on } x\}.$

Another recognizable but not decidable language:

* $L = \{M \# x : M \text{ is a TM that halts on } x\}$. This is known as the **Halting problem**.

Another recognizable but not decidable language:

* $L = \{M \# x : M \text{ is a TM that halts on } x\}$. This is known as the **Halting problem**.

Some non-recognizable languages:

Another recognizable but not decidable language:

* $L = \{M \# x : M \text{ is a TM that halts on } x\}$. This is known as the **Halting problem**.

Some non-recognizable languages:

* $L = \{M \# x : M \text{ is a TM that loops on } x\}.$

Another recognizable but not decidable language:

* $L = \{M \# x : M \text{ is a TM that halts on } x\}$. This is known as the **Halting problem**.

Some non-recognizable languages:

- * $L = \{M \# x : M \text{ is a TM that loops on } x\}.$
- * $L = \{M : M \text{ is a TM that halts on all inputs}\}.$

Let L be a language.

Let L be a language. An **enumerator** for L is a program that accepts no input and:

Let L be a language. An **enumerator** for L is a program that accepts no input and:

* Eventually prints out w for every $w \in L$ (possibly with duplicates).

Let L be a language. An **enumerator** for L is a program that accepts no input and:

- * Eventually prints out w for every $w \in L$ (possibly with duplicates).
- \star Never prints out anything other than strings in L.

Let L be a language. An **enumerator** for L is a program that accepts no input and:

- * Eventually prints out w for every $w \in L$ (possibly with duplicates).
- \star Never prints out anything other than strings in L.

```
Example: the following program is an enumerator for the language \{0^n 1^n : n \in \mathbb{N}\}.
```

```
def enum():
  n = 0
  while True:
    print('0'*n + '1'*n)
    n += 1
```

Let L be a language. An **enumerator** for L is a program that accepts no input and:

- * Eventually prints out w for every $w \in L$ (possibly with duplicates).
- \star Never prints out anything other than strings in L.

```
Example: the following program is an enumerator for the language \{0^n 1^n : n \in \mathbb{N}\}.
```

```
def enum():
  n = 0
  while True:
    print('0'*n + '1'*n)
    n += 1
```

Try running enum.py on your computer!

Here's something that might be useful. Remember to cite!

Here's something that might be useful. Remember to cite!

Theorem (Sipser 3.21)

A language L is recognizable if and only if it has an enumerator.

Here's something that might be useful. Remember to cite!

```
Theorem (Sipser 3.21)
```

A language L is recognizable if and only if it has an enumerator.

Proof. First, suppose L has an enumerator enum. Define M as follows:

```
M(x):
    run enum in the background
    while True:
        if enum has printed x:
            accept
```

Here's something that might be useful. Remember to cite!

```
Theorem (Sipser 3.21)
```

A language L is recognizable if and only if it has an enumerator.

Proof. First, suppose L has an enumerator enum. Define M as follows:

```
M(x):
    run enum in the background
    while True:
        if enum has printed x:
            accept
```

* If $x \in L$, then x is eventually printed by the enumerator, and M(x) accepts.

Here's something that might be useful. Remember to cite!

```
Theorem (Sipser 3.21)
```

A language L is recognizable if and only if it has an enumerator.

Proof. First, suppose L has an enumerator enum. Define M as follows:

```
M(x):
    run enum in the background
    while True:
        if enum has printed x:
            accept
```

- * If $x \in L$, then x is eventually printed by the enumerator, and M(x) accepts.
- * If $x \notin L$, then x is never printed, and M(x) loops.

Here's something that might be useful. Remember to cite!

```
Theorem (Sipser 3.21)
```

A language L is recognizable if and only if it has an enumerator.

Proof. First, suppose L has an enumerator enum. Define M as follows:

```
M(x):
    run enum in the background
    while True:
        if enum has printed x:
            accept
```

* If $x \in L$, then x is eventually printed by the enumerator, and M(x) accepts.

* If $x \notin L$, then x is never printed, and M(x) loops.

Thus M recognizes L.

Here's something that might be useful. Remember to cite!

Theorem (Sipser 3.21)

A language L is recognizable if and only if it has an enumerator.

Proof. Now, suppose L has a recognizer M. Define enum as follows:

Here's something that might be useful. Remember to cite!

Theorem (Sipser 3.21)

A language L is recognizable if and only if it has an enumerator.

Proof. Now, suppose L has a recognizer M. Define enum as follows:

Here's something that might be useful. Remember to cite!

Theorem (Sipser 3.21)

A language L is recognizable if and only if it has an enumerator.

Proof. Now, suppose L has a recognizer M. Define enum as follows: enum():

```
n = 0
while True:
   for all strings w of length <= n:
        run M(w)
        if M(w) accepts:
            print(w)
        n += 1</pre>
```

Question: The above is not a valid enumerator of L. Why?

Here's something that might be useful. Remember to cite!

```
Theorem (Sipser 3.21)
```

A language L is recognizable if and only if it has an enumerator.

```
Proof. Now, suppose L has a recognizer M. Define enum as follows:
enum():
    n = 0
    while True:
```

```
for all strings w of length <= n:
    run M(w) for n steps
    if M(w) accepts:
        print(w)
n += 1</pre>
```

Task:

* Given any $w \notin L$, Why does enum() never print out w?

* Given any $w \in L$, Why does enum() eventually print out w?

Useful trick

```
enum():
n = 0
while True:
   for all strings w of length <= n:
      run M(w) for n steps
      if M(w) accepts:
           print(w)
   n += 1
```

This idea of "running for *n* steps, then increasing the maximum time allowed and trying again" is very useful in CSC363!