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Quiz 2 solutions?
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Pop quiz time!

Suppose A0,A1,A2, . . . is a countably infinite collection of c.e.1 sets. Also
suppose that there exists a machine M which, when given i as an input,
M starts outputting the elements of Ai .

Which of the following is true about the union U =
⋃∞

i=0 Ai?
2

⋆ U is c.e..

⋆ U is computable.

⋆ U is not c.e..

1Recall that c.e. is a synonym for recognizable.
2For those unfamiliar with this

⋃
notation: x ∈ U if and only if x ∈ Ai for some

i ∈ 0, 1, . . ..
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Pop quiz time!

Suppose A0,A1,A2, . . . is a countably infinite collection of c.e. sets. Also
suppose that there exists a machine M which, when given i as an input, M
starts outputting the elements of Ai . Define U =

⋃∞
i=0 Ai . Then U is c.e..

Proof. Define the recognizer T for U as follows:

T(x):

i = 0

while True:

run M(i)

if M(i) outputs x:

accept

i += 1

Question: What is wrong with the above proof?
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i=0 Ai . Then U is c.e..

Proof 2 (better!). Define the recognizer T for U as follows:

T(x):

i = 0

while True:

run M(0), M(1), ..., M(i) for i steps each

if any of the above output x:

accept
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Suppose A0,A1,A2, . . . is a countably infinite collection of c.e. sets. Also
suppose that there exists a machine M which, when given i as an input, M
starts outputting the elements of Ai . Define U =

⋃∞
i=0 Ai . Then U is c.e..

U might not be computable!

Take
A0 = A1 = A2 = . . . = The halting problem. Then
U = The halting problem as well, which is not computable.
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Pop quiz time!
Suppose A0,A1,A2, . . . is a countably infinite collection of c.e. sets. Also
suppose that for each i , there exists an enumerator Mi for Ai .

Which of the following is true about the union U =
⋃∞

i=0 Ai?

⋆ U is c.e..

⋆ U is computable.

⋆ U might not be c.e..
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Pop quiz time!

Suppose A0,A1,A2, . . . is a countably infinite collection of c.e. sets. Also
suppose that for each i , there exists an enumerator Mi for Ai . Define
U =

⋃∞
i=0 Ai . U might not be c.e..

Proof. Let S be any non-c.e. set. Define

Ai =

{
{i} i ∈ S

∅ i /∈ S

Question: What is
⋃∞

i=0 Ai?

Answer: S!

Takeaway: You are given that there exists an enumerator Mi for each Ai .
However, that does not necessarily mean that you can computably
construct Mi , given i .
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Pop quiz time!

It is possible to have a set which is both computable and c.e..

⋆ True.

⋆ False.

All computable sets are c.e.!
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Halt or loop?

Question: For which input x ∈ N does the following function halt?

def f(x):

while x != 0:

x += 1

return x

Answer: f (x) only halts for x = 0.
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Halt or loop?

Question: For which inputs x , y ∈ N does the following function halt?

def f(x, y):

if x = 0:

return y + 1

else if y = 0:

return f(x - 1, y + 1)

else:

return f(x - 1, f(x, y - 1))

Answer: This is the Ackermann function, which halts for all x , y ∈ N (but
takes a very long time!)

You can try running ackermann.py.
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Halt or loop?

Question: For which inputs x , y ∈ N does the following function halt?

def f(x, y):

n = 100

while True:

M_x = the x-th Turing Machine

run M_x(y) for n steps

if it halted within n steps:

return

n += 1

Answer: f halts on inputs {(x , y) ∈ N2 : Mx(y) halts}.
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Halt or loop?

Question: For which inputs x , y ∈ N does the following function halt?

def f(x, y):

n = 0

while True:

M_(x + n) = the (x + n)-th Turing Machine

run M_(x + n)(y) for n steps

if it halted within n steps:

return

n += 1

Answer: f halts on all inputs x , y !3

3Let S = {e : Me(y) halts}. S is an infinite set (why?). Thus there is some n ∈ N
for which x + n ∈ S (why?).
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Halt or loop?
Question: For which inputs x ∈ N does the following function halt?

def f(x):

while x != 1:

if x is odd:

x = 3x + 1

else:

x = x / 2

Answer: We don’t know... This is the unsolved Collatz Conjecture in
mathematics. Try running collatz.py!
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Halting problem

From lecture:
HP = {x ∈ N : Mx(x) halts}

is an undecidable language!

There is no algorithm that determines whether a given program P
halts, when P is given its own source code as the input.
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Halting problem

Another version of the halting problem:

HP2 = {(x , y) ∈ N2 : Mx(y) halts}

is an undecidable language!

Proof 1. Suppose, towards a contradiction, there was a decider D for HP2.
Build a Turing machine M as follows:

M(x):

run D(x, x)

if D accepts:

loop

else:

accept

Suppose M is the e-th Turing machine.
Question: Does M(e) halt or loop? Answer (click me!)

17 / 18

https://www.youtube.com/watch?v=92WHN-pAFCs
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Halting problem
Another version of the halting problem:

HP2 = {(x , y) ∈ N2 : Mx(y) halts}

is an undecidable language!

Proof 2. Suppose, towards a contradiction, there was a decider D for HP2.
Build a Turing machine M as follows:

M(x):

return D(x, x)

This contradicts the fact that

HP = {x ∈ N : Mx(x) halts}

is an undecidable language.

Such an argument of “if you can decide one language, then you can decide
another language” is called a reduction.
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