
CSC363 Tutorial #6
More reductions, Arithmetic Hierarchy

March 1, 2023

1 / 17



Things covered in this tutorial
⋆ What is a m-reduction?
⋆ What is the arithmetic hierarchy?
⋆ Why are we learning all of this?
⋆ Why did I enroll in this course?
⋆ Can I get a hint for A4?

You know why you enrolled in this course.

2 / 17



Reductions, once again...

Recall: Given two languages A and B, we say A Turing reduces to B
(A ≤T B) if given an oracle for B, you can build a decider for A.

The HP-oracle.

3 / 17



Reductions, once again...

Task: Let

HP = {x : Mx(x) halts}.

HP = {x : Mx(x) loops}.

Prove that HP ≤T HP.

Answer: Assuming we have a decider in_HP for HP, we can build the
following decider for HP:

in_HPbar(x):

if in_HP(x):

reject

accept

But HP is not c.e., yet HP is c.e.. Why is HP ≤T HP?

m-reductions address this issue with Turing reductions.

4 / 17



Reductions, once again...

Task: Let

HP = {x : Mx(x) halts}.

HP = {x : Mx(x) loops}.

Prove that HP ≤T HP.
Answer: Assuming we have a decider in_HP for HP, we can build the
following decider for HP:

in_HPbar(x):

if in_HP(x):

reject

accept

But HP is not c.e., yet HP is c.e.. Why is HP ≤T HP?

m-reductions address this issue with Turing reductions.

4 / 17



Reductions, once again...

Task: Let

HP = {x : Mx(x) halts}.

HP = {x : Mx(x) loops}.

Prove that HP ≤T HP.
Answer: Assuming we have a decider in_HP for HP, we can build the
following decider for HP:

in_HPbar(x):

if in_HP(x):

reject

accept

But HP is not c.e., yet HP is c.e.. Why is HP ≤T HP?

m-reductions address this issue with Turing reductions.

4 / 17



m-reductions

Also known as many-one reductions. We say A m-reduces to B
(A ≤m B) if there is a computable function f : N → N such that:

x ∈ A ⇔ f (x) ∈ B.

The m-reduction is a stronger version of the Turing reduction.

5 / 17



m-reductions

Scenario: The aliens come back, and see that we have been abusing their
HP-oracle to illegally decide unrecognizable languages like HP.

They confiscate the HP-oracle from humans.

6 / 17



m-reductions

Scenario: The aliens come back, and see that we have been abusing their
HP-oracle to illegally decide unrecognizable languages like HP.

They confiscate the HP-oracle from humans.

6 / 17



m-reductions

However, the aliens are still willing to solve the halting problem for you.

Now say you wanted to decide whether something is in ATM. Recall

ATM = {(x ,w) : Mx(e) accepts}.

You just have to do the following:

⋆ Given an instance (x ,w) of ATM, construct the following Turing
machine T :

T(z):

ignore z

run M_x(w) # might loop!

if M_x(w) rejects: loop

else: halt

This machine T has a number; call this machine’s number f (x ,w).

⋆ Ask the aliens whether f (x ,w) ∈ HP, with a bribe of [REDACTED].

7 / 17



m-reductions

However, the aliens are still willing to solve the halting problem for you.

Now say you wanted to decide whether something is in ATM. Recall

ATM = {(x ,w) : Mx(e) accepts}.

You just have to do the following:

⋆ Given an instance (x ,w) of ATM, construct the following Turing
machine T :

T(z):

ignore z

run M_x(w) # might loop!

if M_x(w) rejects: loop

else: halt

This machine T has a number; call this machine’s number f (x ,w).

⋆ Ask the aliens whether f (x ,w) ∈ HP, with a bribe of [REDACTED].

7 / 17



m-reductions

However, the aliens are still willing to solve the halting problem for you.

Now say you wanted to decide whether something is in ATM. Recall

ATM = {(x ,w) : Mx(e) accepts}.

You just have to do the following:

⋆ Given an instance (x ,w) of ATM, construct the following Turing
machine T :

T(z):

ignore z

run M_x(w) # might loop!

if M_x(w) rejects: loop

else: halt

This machine T has a number; call this machine’s number f (x ,w).

⋆ Ask the aliens whether f (x ,w) ∈ HP, with a bribe of [REDACTED].

7 / 17



m-reductions

However, the aliens are still willing to solve the halting problem for you.

Now say you wanted to decide whether something is in ATM. Recall

ATM = {(x ,w) : Mx(e) accepts}.

You just have to do the following:

⋆ Given an instance (x ,w) of ATM, construct the following Turing
machine T :

T(z):

ignore z

run M_x(w) # might loop!

if M_x(w) rejects: loop

else: halt

This machine T has a number; call this machine’s number f (x ,w).

⋆ Ask the aliens whether f (x ,w) ∈ HP, with a bribe of [REDACTED].

7 / 17



m-reductions

We say A m-reduces to B (A ≤m B) if there is a computable function
f : N → N such that:

x ∈ A ⇔ f (x) ∈ B.

Ok... how is this different from Turing reductions?
Answer: To show A ≤T B, you assume that you have a B-oracle, and
build a decider for A.

To show A ≤m B, you assume that you have a B-oracle, and build a
decider for A, with the following restrictions:

⋆ You must call the B-oracle exactly once – no more, no less.

⋆ You must return whatever the B-oracle returns; negating the
return value of the B-oracle (or performing any modification to the
return value) is illegal.
In other words, the last line of your decider for A must be
return in_B(...).

8 / 17



m-reductions

We say A m-reduces to B (A ≤m B) if there is a computable function
f : N → N such that:

x ∈ A ⇔ f (x) ∈ B.

Ok... how is this different from Turing reductions?
Answer: To show A ≤T B, you assume that you have a B-oracle, and
build a decider for A.

To show A ≤m B, you assume that you have a B-oracle, and build a
decider for A, with the following restrictions:

⋆ You must call the B-oracle exactly once – no more, no less.

⋆ You must return whatever the B-oracle returns; negating the
return value of the B-oracle (or performing any modification to the
return value) is illegal.
In other words, the last line of your decider for A must be
return in_B(...).

8 / 17



m-reductions

We say A m-reduces to B (A ≤m B) if there is a computable function
f : N → N such that:

x ∈ A ⇔ f (x) ∈ B.

Ok... how is this different from Turing reductions?
Answer: To show A ≤T B, you assume that you have a B-oracle, and
build a decider for A.

To show A ≤m B, you assume that you have a B-oracle, and build a
decider for A, with the following restrictions:

⋆ You must call the B-oracle exactly once – no more, no less.

⋆ You must return whatever the B-oracle returns; negating the
return value of the B-oracle (or performing any modification to the
return value) is illegal.
In other words, the last line of your decider for A must be
return in_B(...).

8 / 17



m-reductions

Task: We’ve shown HP ≤T HP using the following decider for HP:

in_HPbar(x):

if in_HP(x):

accept

reject

Why isn’t the above proof acceptable for showing that HP ≤m HP?

Answer: Remember; in a m-reduction proof of A ≤m B, you must return
whatever the B-oracle returns. You can’t make any modifications (such as
negation) to what the B-oracle returns.
The last line of your decider for A must be return in_B(...).

9 / 17



m-reductions

Task: We’ve shown HP ≤T HP using the following decider for HP:

in_HPbar(x):

if in_HP(x):

accept

reject

Why isn’t the above proof acceptable for showing that HP ≤m HP?

Answer: Remember; in a m-reduction proof of A ≤m B, you must return
whatever the B-oracle returns. You can’t make any modifications (such as
negation) to what the B-oracle returns.
The last line of your decider for A must be return in_B(...).

9 / 17



m-reductions

Example: show that {even numbers} ≤m {odd numbers}.

Proof. I want to use the following procedure, using an oracle for the odd
numbers:

is_even(x):

if is_odd(x):

reject

accept

Unfortunately, this is not allowed...

10 / 17



m-reductions

Example: show that {even numbers} ≤m {odd numbers}.

Proof. I want to use the following procedure, using an oracle for the odd
numbers:

is_even(x):

if is_odd(x):

reject

accept

Unfortunately, this is not allowed...

10 / 17



m-reductions

Example: show that {even numbers} ≤m {odd numbers}.

Proof.

is_even(x):

t = x + 1

return is_odd(t)

This is acceptable!

11 / 17



m-reductions

Example: show that {even numbers} ≤m {odd numbers}.

Proof.

is_even(x):

t = x + 1

return is_odd(t)

This is acceptable!

11 / 17



m-reductions

We say A m-reduces to B (A ≤m B) if there is a computable function
f : N → N such that:

x ∈ A ⇔ f (x) ∈ B.

The above function f is called the reduction function.1

Task: Show that:

⋆ A ≤m {0, 1}, where A is a computable set.

⋆ A ̸≤m ∅, where A is any nonempty set.

⋆ A ≤m HP = {x : Mx(x) halts}, where A is a c.e. set.

1This function does not have to be injective.
12 / 17



m-reductions

We say A m-reduces to B (A ≤m B) if there is a computable function
f : N → N such that:

x ∈ A ⇔ f (x) ∈ B.

The above function f is called the reduction function.1

Task: Show that:

⋆ A ≤m {0, 1}, where A is a computable set.

⋆ A ̸≤m ∅, where A is any nonempty set.

⋆ A ≤m HP = {x : Mx(x) halts}, where A is a c.e. set.

1This function does not have to be injective.
12 / 17



m-reductions

Note that if A is c.e., then A ≤m HP.

Is the converse true? If A is any set with A ≤m HP, does it follow that A
is c.e.?

Yes. In fact, if A ≤m B and B is c.e., then so is A. (Think about how you
would recognize membership in A!)

Consequently, HP ̸≤m HP.

13 / 17



m-reductions

Note that if A is c.e., then A ≤m HP.

Is the converse true? If A is any set with A ≤m HP, does it follow that A
is c.e.?

Yes. In fact, if A ≤m B and B is c.e., then so is A. (Think about how you
would recognize membership in A!)

Consequently, HP ̸≤m HP.

13 / 17



m-reductions

Note that if A is c.e., then A ≤m HP.

Is the converse true? If A is any set with A ≤m HP, does it follow that A
is c.e.?

Yes. In fact, if A ≤m B and B is c.e., then so is A. (Think about how you
would recognize membership in A!)

Consequently, HP ̸≤m HP.

13 / 17



Arithmetic Hierarchy
(I included this because the assignment’s explanation might not be clear
enough)

In assignment 3 questions 1 and 4, you prove that any set A is c.e. if and
only if there is a computable binary relation R such that

A = {x : ∃y R(x , y)}.

For example:

⋆ The set of even numbers E is c.e., since

E = {x : ∃y R(x , y)}

where R(x , y) is true iff x is even.

⋆ The halting set is c.e., since

HP = {x : ∃s ϕ(x , s)}

where ϕ(x , s) is true iff Mx(x) halts in s steps or less.

14 / 17



Arithmetic Hierarchy
(I included this because the assignment’s explanation might not be clear
enough)

In assignment 3 questions 1 and 4, you prove that any set A is c.e. if and
only if there is a computable binary relation R such that

A = {x : ∃y R(x , y)}.

For example:

⋆ The set of even numbers E is c.e., since

E = {x : ∃y R(x , y)}

where R(x , y) is true iff

x is even.

⋆ The halting set is c.e., since

HP = {x : ∃s ϕ(x , s)}

where ϕ(x , s) is true iff Mx(x) halts in s steps or less.

14 / 17



Arithmetic Hierarchy
(I included this because the assignment’s explanation might not be clear
enough)

In assignment 3 questions 1 and 4, you prove that any set A is c.e. if and
only if there is a computable binary relation R such that

A = {x : ∃y R(x , y)}.

For example:

⋆ The set of even numbers E is c.e., since

E = {x : ∃y R(x , y)}

where R(x , y) is true iff x is even.

⋆ The halting set is c.e., since

HP = {x : ∃s ϕ(x , s)}

where ϕ(x , s) is true iff

Mx(x) halts in s steps or less.

14 / 17



Arithmetic Hierarchy
(I included this because the assignment’s explanation might not be clear
enough)

In assignment 3 questions 1 and 4, you prove that any set A is c.e. if and
only if there is a computable binary relation R such that

A = {x : ∃y R(x , y)}.

For example:

⋆ The set of even numbers E is c.e., since

E = {x : ∃y R(x , y)}

where R(x , y) is true iff x is even.

⋆ The halting set is c.e., since

HP = {x : ∃s ϕ(x , s)}

where ϕ(x , s) is true iff Mx(x) halts in s steps or less.
14 / 17



Arithmetic Hierarchy

What about Tot?

Tot = {x : Mx halts on any input}

Task: find a computable 3-ary relation R such that

Tot = {x : ∀y∃s R(x , y , s)}.

Answer: R(x , y , s) is true iff Mx(y) halts in s steps or less.

15 / 17



Arithmetic Hierarchy

What about Tot?

Tot = {x : Mx halts on any input}

Task: find a computable 3-ary relation R such that

Tot = {x : ∀y∃s R(x , y , s)}.

Answer: R(x , y , s) is true iff Mx(y) halts in s steps or less.

15 / 17



Arithmetic Hierarchy

What about Tot?

Tot = {x : Mx halts on any input}

Task: find a computable 3-ary relation R such that

Tot = {x : ∀y∃s R(x , y , s)}.

Answer: R(x , y , s) is true iff Mx(y) halts in s steps or less.

15 / 17



Arithmetic Hierarchy

Tot = {x : ∀y∃s R(x , y , s)}.

So far we have:

⋆ Any computable set C can be written in the form C = {x : R(x)},
where R is some computable relation.

⋆ Any c.e. set A can be written in the form A = {x : ∃y R(x , y)}.
⋆ Tot can be written in the form {x : ∀y∃z R(x , y , z)}.
⋆ can be written in the form {x : ∃y1∀y2∃y3 R(x , y1, y2, y3)}.
Cof = {x : There are finitely many inputs y for which Mx(y) loops}.

This alternating syntactical combination is known as the Arithmetic
Hierarchy or the Σ0

n-Π
0
n Hierarchy.

16 / 17



Arithmetic Hierarchy

Tot = {x : ∀y∃s R(x , y , s)}.

So far we have:

⋆ Any computable set C can be written in the form C = {x : R(x)},
where R is some computable relation.

⋆ Any c.e. set A can be written in the form A = {x : ∃y R(x , y)}.
⋆ Tot can be written in the form {x : ∀y∃z R(x , y , z)}.
⋆ can be written in the form {x : ∃y1∀y2∃y3 R(x , y1, y2, y3)}.
Cof = {x : There are finitely many inputs y for which Mx(y) loops}.

This alternating syntactical combination is known as the Arithmetic
Hierarchy or the Σ0

n-Π
0
n Hierarchy.

16 / 17



Arithmetic Hierarchy

Tot = {x : ∀y∃s R(x , y , s)}.

So far we have:

⋆ Any computable set C can be written in the form C = {x : R(x)},
where R is some computable relation.

⋆ Any c.e. set A can be written in the form A = {x : ∃y R(x , y)}.

⋆ Tot can be written in the form {x : ∀y∃z R(x , y , z)}.
⋆ can be written in the form {x : ∃y1∀y2∃y3 R(x , y1, y2, y3)}.
Cof = {x : There are finitely many inputs y for which Mx(y) loops}.

This alternating syntactical combination is known as the Arithmetic
Hierarchy or the Σ0

n-Π
0
n Hierarchy.

16 / 17



Arithmetic Hierarchy

Tot = {x : ∀y∃s R(x , y , s)}.

So far we have:

⋆ Any computable set C can be written in the form C = {x : R(x)},
where R is some computable relation.

⋆ Any c.e. set A can be written in the form A = {x : ∃y R(x , y)}.
⋆ Tot can be written in the form {x : ∀y∃z R(x , y , z)}.

⋆ can be written in the form {x : ∃y1∀y2∃y3 R(x , y1, y2, y3)}.
Cof = {x : There are finitely many inputs y for which Mx(y) loops}.

This alternating syntactical combination is known as the Arithmetic
Hierarchy or the Σ0

n-Π
0
n Hierarchy.

16 / 17



Arithmetic Hierarchy

Tot = {x : ∀y∃s R(x , y , s)}.

So far we have:

⋆ Any computable set C can be written in the form C = {x : R(x)},
where R is some computable relation.

⋆ Any c.e. set A can be written in the form A = {x : ∃y R(x , y)}.
⋆ Tot can be written in the form {x : ∀y∃z R(x , y , z)}.
⋆ ??? can be written in the form {x : ∃y1∀y2∃y3 R(x , y1, y2, y3)}.

Cof = {x : There are finitely many inputs y for which Mx(y) loops}.

This alternating syntactical combination is known as the Arithmetic
Hierarchy or the Σ0

n-Π
0
n Hierarchy.

16 / 17



Arithmetic Hierarchy

Tot = {x : ∀y∃s R(x , y , s)}.

So far we have:

⋆ Any computable set C can be written in the form C = {x : R(x)},
where R is some computable relation.

⋆ Any c.e. set A can be written in the form A = {x : ∃y R(x , y)}.
⋆ Tot can be written in the form {x : ∀y∃z R(x , y , z)}.
⋆ Cof can be written in the form {x : ∃y1∀y2∃y3 R(x , y1, y2, y3)}.
Cof = {x : There are finitely many inputs y for which Mx(y) loops}.

This alternating syntactical combination is known as the Arithmetic
Hierarchy or the Σ0

n-Π
0
n Hierarchy.

16 / 17



Arithmetic Hierarchy

This alternating syntactical combination is known as the Arithmetic
Hierarchy or the Σ0

n-Π
0
n Hierarchy.

⋆ A set A is Σ0
n if there is a n-ary relation R such that

A = {x : ∃y1∀y2∃y3∀y4 . . . yn R(x , y1, y2, . . . , yn)}.

⋆ A set A is Π0
n if there is a n-ary relation R such that

A = {x : ∀y1∃y2∀y3∃y4 . . . yn R(x , y1, y2, . . . , yn)}.

Task: Show that

⋆ Any computable set C is Σ0
0 and Π0

0.

⋆ Any c.e. set A is Σ0
1. The complement of any c.e. set is Π0

1.

⋆ Tot is Π0
2.

⋆ Cof is Σ0
3.

17 / 17



Arithmetic Hierarchy

This alternating syntactical combination is known as the Arithmetic
Hierarchy or the Σ0

n-Π
0
n Hierarchy.

⋆ A set A is Σ0
n if there is a n-ary relation R such that

A = {x : ∃y1∀y2∃y3∀y4 . . . yn R(x , y1, y2, . . . , yn)}.

⋆ A set A is Π0
n if there is a n-ary relation R such that

A = {x : ∀y1∃y2∀y3∃y4 . . . yn R(x , y1, y2, . . . , yn)}.

Task: Show that

⋆ Any computable set C is Σ0
0 and Π0

0.

⋆ Any c.e. set A is Σ0
1. The complement of any c.e. set is Π0

1.

⋆ Tot is Π0
2.

⋆ Cof is Σ0
3.

17 / 17



Arithmetic Hierarchy

This alternating syntactical combination is known as the Arithmetic
Hierarchy or the Σ0

n-Π
0
n Hierarchy.

⋆ A set A is Σ0
n if there is a n-ary relation R such that

A = {x : ∃y1∀y2∃y3∀y4 . . . yn R(x , y1, y2, . . . , yn)}.

⋆ A set A is Π0
n if there is a n-ary relation R such that

A = {x : ∀y1∃y2∀y3∃y4 . . . yn R(x , y1, y2, . . . , yn)}.

Task: Show that

⋆ Any computable set C is Σ0
0 and Π0

0.

⋆ Any c.e. set A is Σ0
1. The complement of any c.e. set is Π0

1.

⋆ Tot is Π0
2.

⋆ Cof is Σ0
3.

17 / 17



Arithmetic Hierarchy

This alternating syntactical combination is known as the Arithmetic
Hierarchy or the Σ0

n-Π
0
n Hierarchy.

⋆ A set A is Σ0
n if there is a n-ary relation R such that

A = {x : ∃y1∀y2∃y3∀y4 . . . yn R(x , y1, y2, . . . , yn)}.

⋆ A set A is Π0
n if there is a n-ary relation R such that

A = {x : ∀y1∃y2∀y3∃y4 . . . yn R(x , y1, y2, . . . , yn)}.

Task: Show that

⋆ Any computable set C is Σ0
0 and Π0

0.

⋆ Any c.e. set A is Σ0
1. The complement of any c.e. set is Π0

1.

⋆ Tot is Π0
2.

⋆ Cof is Σ0
3.

17 / 17



Arithmetic Hierarchy

This alternating syntactical combination is known as the Arithmetic
Hierarchy or the Σ0

n-Π
0
n Hierarchy.

⋆ A set A is Σ0
n if there is a n-ary relation R such that

A = {x : ∃y1∀y2∃y3∀y4 . . . yn R(x , y1, y2, . . . , yn)}.

⋆ A set A is Π0
n if there is a n-ary relation R such that

A = {x : ∀y1∃y2∀y3∃y4 . . . yn R(x , y1, y2, . . . , yn)}.

Task: Show that

⋆ Any computable set C is Σ0
0 and Π0

0.

⋆ Any c.e. set A is Σ0
1. The complement of any c.e. set is Π0

1.

⋆ Tot is Π0
2.

⋆ Cof is Σ0
3.

17 / 17



Arithmetic Hierarchy

This alternating syntactical combination is known as the Arithmetic
Hierarchy or the Σ0

n-Π
0
n Hierarchy.

⋆ A set A is Σ0
n if there is a n-ary relation R such that

A = {x : ∃y1∀y2∃y3∀y4 . . . yn R(x , y1, y2, . . . , yn)}.

⋆ A set A is Π0
n if there is a n-ary relation R such that

A = {x : ∀y1∃y2∀y3∃y4 . . . yn R(x , y1, y2, . . . , yn)}.

Task: Show that

⋆ Any computable set C is Σ0
0 and Π0

0.

⋆ Any c.e. set A is Σ0
1. The complement of any c.e. set is Π0

1.

⋆ Tot is Π0
2.

⋆ Cof is Σ0
3.

17 / 17


