
CSC363 Tutorial #7
Runtime of Turing Machines

March 8, 2023

1 / 12

Things covered in this tutorial
⋆ How can I recognize the language {0n1n : n ∈ N}?
⋆ How can I recognize the language {0n1n : n ∈ N}, but faster?
⋆ What is “pseudo-polynomial time”, and why do I need to be be aware
of this?

You are still enrolled in this course.

2 / 12

We need to go back to the basics!

Task: Construct a decider for the language {0n1n : n ∈ N}. What is the
runtime?

Ans:

is_in_0n1n(x):

if len(x) is odd:

reject

for i in range(len(x)/2): # not including len(x)/2

if x[i] != 0 or x[len(x)/2 + i - 1] != 1:

reject

accept

3 / 12

We need to go back to the basics!

Task: Construct a decider for the language {0n1n : n ∈ N}. What is the
runtime?

Ans:

is_in_0n1n(x):

if len(x) is odd:

reject

for i in range(len(x)/2): # not including len(x)/2

if x[i] != 0 or x[len(x)/2 + i - 1] != 1:

reject

accept

Since there is only one for loop, the runtime is O(n).

3 / 12

We need to go back to the basics!

Task: Construct a decider for the language {0n1n : n ∈ N}. What is the
runtime?

Ans:

is_in_0n1n(x):

if len(x) is odd:

reject

for i in range(len(x)/2): # not including len(x)/2

if x[i] != 0 or x[len(x)/2 + i - 1] != 1:

reject

accept

Since there is only one for loop, the runtime is O(n).

We need to be more careful regarding what we mean by “runtime”...

3 / 12

Definition of “runtime”

Let M be a Turing machine, and f : N → N a function. We say that M is
“O(f (n))-time“ if: given any input x of size n, M(x) halts in O(f (n))
steps or less.

is_in_0n1n(x):

if len(x) is odd:

reject

for i in range(len(x)/2): # not including len(x)/2

if x[i] != 0 or x[len(x)/2 + i - 1] != 1:

reject

accept

Church-Turing implies that there is a Turing machine M that computes
is_in_0n1n(). Church-Turing does not guarantee that M has the same
runtime as is_in_0n1n().

4 / 12

Definition of “runtime”

Let M be a Turing machine, and f : N → N a function. We say that M is
“O(f (n))-time“ if: given any input x of size n, M(x) halts in O(f (n))
steps or less.

is_in_0n1n(x):

if len(x) is odd:

reject

for i in range(len(x)/2): # not including len(x)/2

if x[i] != 0 or x[len(x)/2 + i - 1] != 1:

reject

accept

Church-Turing implies that there is a Turing machine M that computes
is_in_0n1n().

Church-Turing does not guarantee that M has the same
runtime as is_in_0n1n().

4 / 12

Definition of “runtime”

Let M be a Turing machine, and f : N → N a function. We say that M is
“O(f (n))-time“ if: given any input x of size n, M(x) halts in O(f (n))
steps or less.

is_in_0n1n(x):

if len(x) is odd:

reject

for i in range(len(x)/2): # not including len(x)/2

if x[i] != 0 or x[len(x)/2 + i - 1] != 1:

reject

accept

Church-Turing implies that there is a Turing machine M that computes
is_in_0n1n(). Church-Turing does not guarantee that M has the same
runtime as is_in_0n1n().

4 / 12

0n1n Turing Machine

At a lower level, how would one construct a Turing machine that decides
{0n1n}?

Task: Try to construct a Turing machine that decides {0n1n} in
O(n2)-time.

Please don’t look ahead in my slides!

5 / 12

0n1n Turing Machine

At a lower level, how would one construct a Turing machine that decides
{0n1n}?
Task: Try to construct a Turing machine that decides {0n1n} in
O(n2)-time.

Please don’t look ahead in my slides!

5 / 12

0n1n Turing Machine
How to decide whether something is in 0n1n, using a Turing machine:

1. Attempt to “cross out” a 0 at the left end of the string.
2. Move to the right end of the string.
3. Attempt to “cross out” a 1 at the right end of the string.
4. Move to the left end of the string.
5. Go to step 1.

O(n2) steps! Click for free essay help Adobe Premier Download (working
2014) free IQ test DougFord-F150 (Mississauga license plate) UofT
Mailbox Storage clear

6 / 12

https://turingmachinesimulator.com/shared/bkuepwxgdh
https://turingmachinesimulator.com/shared/bkuepwxgdh
https://turingmachinesimulator.com/shared/bkuepwxgdh

0n1n Turing Machine
How to decide whether something is in 0n1n, using a Turing machine:

1. Attempt to “cross out” a 0 at the left end of the string.
2. Move to the right end of the string.
3. Attempt to “cross out” a 1 at the right end of the string.
4. Move to the left end of the string.
5. Go to step 1.

O(n2) steps! Click for free essay help Adobe Premier Download (working
2014) free IQ test DougFord-F150 (Mississauga license plate) UofT
Mailbox Storage clear

6 / 12

https://turingmachinesimulator.com/shared/bkuepwxgdh
https://turingmachinesimulator.com/shared/bkuepwxgdh
https://turingmachinesimulator.com/shared/bkuepwxgdh

0n1n Turing Machine, but faster!
We can actually decide {0n1n} in O(n log n) steps!

1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat the following as long as there is both a 0 and a 1 on the tape:

2.1. Scan across the tape, and reject if the total number of 0s and 1s
remaining is odd.

2.2. Scan again across the tape, crossing off every other 0, and
crossing off every other 1.

3. If the tape doesn’t have any 0s or 1s, accept. Else, reject.

Click for counter stirik free cheat $2000 skin (2003) sans gaming
poggers!![240p] chikin farm recipe (FDA approvid) linkin chester alive????
[CLICK TO FIND OUT] nokia

7 / 12

https://turingmachinesimulator.com/shared/prsswhkkyb
https://turingmachinesimulator.com/shared/prsswhkkyb
https://turingmachinesimulator.com/shared/prsswhkkyb

0n1n Turing Machine, but faster!
We can actually decide {0n1n} in O(n log n) steps!

1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat the following as long as there is both a 0 and a 1 on the tape:

2.1. Scan across the tape, and reject if the total number of 0s and 1s
remaining is odd.

2.2. Scan again across the tape, crossing off every other 0, and
crossing off every other 1.

3. If the tape doesn’t have any 0s or 1s, accept. Else, reject.

Click for counter stirik free cheat $2000 skin (2003) sans gaming
poggers!![240p] chikin farm recipe (FDA approvid) linkin chester alive????
[CLICK TO FIND OUT] nokia

7 / 12

https://turingmachinesimulator.com/shared/prsswhkkyb
https://turingmachinesimulator.com/shared/prsswhkkyb
https://turingmachinesimulator.com/shared/prsswhkkyb

0n1n Turing Machine, but faster!
We can actually decide {0n1n} in O(n log n) steps!

1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat the following as long as there is both a 0 and a 1 on the tape:

2.1. Scan across the tape, and reject if the total number of 0s and 1s
remaining is odd.

2.2. Scan again across the tape, crossing off every other 0, and
crossing off every other 1.

3. If the tape doesn’t have any 0s or 1s, accept. Else, reject.

Click for counter stirik free cheat $2000 skin (2003) sans gaming
poggers!![240p] chikin farm recipe (FDA approvid) linkin chester alive????
[CLICK TO FIND OUT] nokia

7 / 12

https://turingmachinesimulator.com/shared/prsswhkkyb
https://turingmachinesimulator.com/shared/prsswhkkyb
https://turingmachinesimulator.com/shared/prsswhkkyb

Polynomial time Turing machines
Rejoice, CSC373 enjoyers!

A Turing machine is polynomial-time if it runs in O(nk)-time for some
k ∈ N.

Examples of polynomial runtimes: O(n), O(1), O(n5), O(n999999),
O(n log n), . . .

Examples of non-polynomial runtimes: O(2n), O(n!), O(nn),
O(Ackermann(n, n)), . . .

8 / 12

Polynomial time Turing machines
Rejoice, CSC373 enjoyers!

A Turing machine is polynomial-time if it runs in O(nk)-time for some
k ∈ N.

Examples of polynomial runtimes: O(n), O(1), O(n5), O(n999999),
O(n log n), . . .

Examples of non-polynomial runtimes: O(2n), O(n!), O(nn),
O(Ackermann(n, n)), . . .

8 / 12

Polynomial time Turing machines
We could decide {0n1n} in O(n) time on a modern computer, but we
needed O(n2) time in a Turing machine implementation!

9 / 12

Church Turing Thesis 2: Electric Boogaloo

Let L be any language.

L is decidable by a polynomial-time Turing machine if and only if L
is decidable by a computer in polynomial time.

Note: not necessarily the same O-bound! {0n1n} is decidable in O(n)
time on a computer, but O(n log n) time on a Turing machine. Either way,
both O(n) and O(n log n) are polynomial runtimes.

10 / 12

Church Turing Thesis 2: Electric Boogaloo

Let L be any language.

L is decidable by a polynomial-time Turing machine if and only if L
is decidable by a computer in polynomial time.

Note: not necessarily the same O-bound! {0n1n} is decidable in O(n)
time on a computer, but O(n log n) time on a Turing machine. Either way,
both O(n) and O(n log n) are polynomial runtimes.

10 / 12

Church Turing Thesis 2: Electric Boogaloo

Let L be any language.

L is decidable by a polynomial-time Turing machine if and only if L
is decidable by a computer in polynomial time.

Note: not necessarily the same O-bound! {0n1n} is decidable in O(n)
time on a computer, but O(n log n) time on a Turing machine. Either way,
both O(n) and O(n log n) are polynomial runtimes.

10 / 12

Pseudo-polynomial runtime

(Please do not look this up on Wikipedia!)

Consider the following code to decide whether a number is prime:

is_prime(x):

if x == 1:

return False

for i in range(2, x): # not including x

if i divides x:

return False

return True

Question: Why is this code not polynomial time?

Hint: Let M be a Turing machine, and f : N → N a function. We say
that M is “O(f (n))-time“ if: given any input x of size n, M(x) halts in
O(f (n)) steps or less.

11 / 12

Pseudo-polynomial runtime

(Please do not look this up on Wikipedia!)

Consider the following code to decide whether a number is prime:

is_prime(x):

if x == 1:

return False

for i in range(2, x): # not including x

if i divides x:

return False

return True

Question: Why is this code not polynomial time?

Hint: Let M be a Turing machine, and f : N → N a function. We say
that M is “O(f (n))-time“ if: given any input x of size n, M(x) halts in
O(f (n)) steps or less.

11 / 12

Pseudo-polynomial runtime
The set of prime numbers is actually decidable in polynomial time!

The AKS Primality Test can determine if an input number is prime in
O(n12) time (where n is the number of digits in the input, not the
numerical value).

Proof that it works:

12 / 12

https://en.wikipedia.org/wiki/AKS_primality_test

Pseudo-polynomial runtime
The set of prime numbers is actually decidable in polynomial time!

The AKS Primality Test can determine if an input number is prime in
O(n12) time (where n is the number of digits in the input, not the
numerical value).

Proof that it works:

12 / 12

https://en.wikipedia.org/wiki/AKS_primality_test

Pseudo-polynomial runtime
The set of prime numbers is actually decidable in polynomial time!

The AKS Primality Test can determine if an input number is prime in
O(n12) time (where n is the number of digits in the input, not the
numerical value).

Proof that it works:

12 / 12

https://en.wikipedia.org/wiki/AKS_primality_test

