CSC363 Tutorial #9 NP completeness, Boolean Satisfiability Problem

March 22, 2023

Things covered in this tutorial

- * What is NP-completeness?
- \star What's the Boolean Satisfiability Problem (SAT)?
- \star Why is SAT NP-complete?

These problems are NP-complete! They are the hardest NP-problems.

- * Subset Sum.
- * Boolean Satisfiability Problem.
- * Graph Isomorphism Problem.
- * Vertex Cover Problem.
- * Knapsack Problem.
- * Hamiltonian Path Problem.
- * Generalized Sudoku.

* ...

Showing that any of these problems is $\notin P$ will net you \$1 million USD.

These problems are NP-complete! They are the hardest NP-problems.

- * Subset Sum.
- * Boolean Satisfiability Problem.
- * Graph Isomorphism Problem.
- * Vertex Cover Problem.
- * Knapsack Problem.
- * Hamiltonian Path Problem.
- * Generalized Sudoku.

* ...

Showing that any of these problems is $\notin P$ will net you \$1 million USD.

MLS® #: WS897079

A langague L is NP-complete if both of the following are satisfied:
1.
2.
Task: Fill out the above!

A langague *L* is **NP-complete** if both of the following are satisfied: 1. $L \in NP$.

2. For any language $M \in NP$, we have $M \leq_p L$.

Task: Fill out the above!

NP-complete problems are the *hardest NP problems*.

Question: What's a boolean formula?

Question: What's a *boolean formula*?

Ans: A *boolean formula* is a "well-formed" logical expression consisting of symbols from

$$\{(,), \neg, \lor, \land, \rightarrow, \leftrightarrow\}$$

and one or more "variables". A boolean formula's truth value can be evaluated once all variables are assigned to T or F.

Question: What's a *boolean formula*?

Ans: A *boolean formula* is a "well-formed" logical expression consisting of symbols from

$$\{(,), \neg, \lor, \land, \rightarrow, \leftrightarrow\}$$

and one or more "variables". A boolean formula's truth value can be evaluated once all variables are assigned to T or F.

The following are boolean formulas:

- * $(x_1 \lor x_2) \rightarrow x_3$ (with x_1, x_2, x_3 being the variables).
- * $(x \land \neg y) \land x$ (with x, y, z being the variables).
- * $x \wedge x \wedge x \wedge \neg x$ (with x being the only variable).

Question: What's a *boolean formula*?

Ans: A *boolean formula* is a "well-formed" logical expression consisting of symbols from

$$\{(,),\neg,\lor,\land,\rightarrow,\leftrightarrow\}$$

and one or more "variables". A boolean formula's truth value can be evaluated once all variables are assigned to T or F.

The following are boolean formulas:

- * $(x_1 \lor x_2) \rightarrow x_3$ (with x_1, x_2, x_3 being the variables).
- * $(x \land \neg y) \land x$ (with x, y, z being the variables).
- * $x \wedge x \wedge x \wedge \neg x$ (with x being the only variable).

The following are not boolean formulas:

* $x_1 x_2^2 = x_3.$ * ()()() $x_1 \to \neg$

Task: Evaluate the boolean formula

$$(x_1 \lor x_2 \lor x_3) \rightarrow ((x_2 \land x_3) \rightarrow \neg x_1)$$

with the assignments $x_1 = T, x_2 = F, x_3 = F$

Task: Evaluate the boolean formula

$$(x_1 \lor x_2 \lor x_3) \rightarrow ((x_2 \land x_3) \rightarrow \neg x_1)$$

with the assignments $x_1 = T, x_2 = F, x_3 = F$

Ans: We have

$$(T \lor F \lor F) \to ((F \land F) \to \neg T).$$

Since $(T \lor F \lor F)$ is true, the above reduces to

$$T \to ((F \land F) \to \neg T).$$

Since $T \to X$ has the same truth value as X, we get

$$(F \wedge F) \rightarrow \neg T.$$

 $(F \wedge F) \rightarrow \neg T.$

Continuing, $(F \land F)$ is false, so we reduce to

 $F \rightarrow \neg T$

and since $F \rightarrow$ something is always true, we reduce to

Τ.

Thus, we conclude that

$$(x_1 \lor x_2 \lor x_3) \rightarrow ((x_2 \land x_3) \rightarrow \neg x_1)$$

with the assignments $x_1 = T, x_2 = F, x_3 = F$ evaluates to true.

Task: Come up with a boolean formula such that *no assignment of its variables* makes the formula evaluate to true.

Task: Come up with a boolean formula such that *no assignment of its variables* makes the formula evaluate to true.

Answer: Something like

 $x \wedge \neg x$

should work.

Task: Come up with a boolean formula such that *no assignment of its variables* makes the formula evaluate to true.

Answer: Something like

 $x \land \neg x$

should work.

Definition: A boolean formula ϕ is **satisfiable** if *some* assignment of its variables makes ϕ evaluate to true. We let SAT be the set of all satisfiable boolean formulas:

 $SAT = \{\phi : \phi \text{ is a satisfiable boolean formula.}\}$

SAT

Task: Determine which of the following formulas are satisfiable.

 \star

 $(T_{0.0.0} \wedge T_{1.0.0})$ $\wedge (Q_{0,0}) \wedge (H_{0,0})$ $\wedge (\neg (T_{0,0,0}) \lor \neg (T_{0,1,0})) \land (\neg (T_{1,0,0}) \lor \neg (T_{1,1,0}))$ $\wedge (\neg (T_{0,0,1}) \lor \neg (T_{0,1,1})) \land (\neg (T_{1,0,1}) \lor \neg (T_{1,1,1}))$ $\wedge (T_{0,0,0} \land T_{0,1,1} \to H_{0,0}) \land \land (T_{0,1,0} \land T_{0,0,1} \to H_{0,0})$ $\wedge (\neg Q_{0,0} \lor \neg Q_{1,0}) \land (\neg Q_{0,1} \lor \neg Q_{1,1})$ $\wedge (\neg H_{0,0} \lor \neg H_{1,0}) \land (\neg H_{0,1} \lor \neg H_{1,1})$ $\wedge ((H_{0,0} \land Q_{0,0} \land T_{0,0,0}) \rightarrow (H_{1,1} \land Q_{1,1} \land T_{0,1,1}))$ $\wedge Q_{1,0} \vee Q_{1,1}$

Question: How do we know that a boolean formula is not satisfiable?

Question: How do we know that a boolean formula is not satisfiable? **Answer:** Check through all combinations of variable assignments...

Question: How do we know that a boolean formula is not satisfiable? **Answer:** Check through all combinations of variable assignments...

Question: How long does it take to check through all combinations?

Question: How do we know that a boolean formula is not satisfiable? **Answer:** Check through all combinations of variable assignments...

Question: How long does it take to check through all combinations? **Answer:** $O(2^n)...$

SAT is another easy-to-verify, hard-to-solve¹ problem.

¹We haven't proven that it's hard-to-solve though, since we haven't yet proven SAT $\notin P$.

 $SAT = \{\phi : \phi \text{ is a satisfiable boolean formula.}\}$

Very hard problem! SAT is NP-complete.

Question: which two statements do we need to show, in order to prove SAT is NP-complete?

 $SAT = \{\phi : \phi \text{ is a satisfiable boolean formula.}\}$

Very hard problem! SAT is NP-complete.

Question: which two statements do we need to show, in order to prove SAT is NP-complete?

Answer:

- 1. SAT \in NP.
- 2. For any language $L \in NP$, we have $L \leq_p SAT$.

 $SAT = \{\phi : \phi \text{ is a satisfiable boolean formula.}\}$

Question: How do we show a language *L* is in NP?

 $SAT = \{\phi : \phi \text{ is a satisfiable boolean formula.}\}$

Question: How do we show a language *L* is in NP? **Answer:** Build a poly-time NTM that decides *L*!

 $SAT = \{\phi : \phi \text{ is a satisfiable boolean formula.}\}$

Question: How do we show a language *L* is in NP? **Answer:** Build a poly-time NTM that decides *L*!

```
Task: Show that SAT \in NP.
```

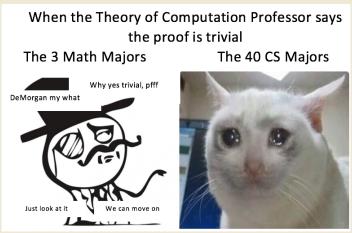
```
SAT(phi):
    if phi is not a boolean formula:
        reject
    let x1, ..., xn be the variables of phi
```

```
Task: Show that SAT \in NP.
SAT(phi):
  if phi is not a boolean formula:
    reject
  let x1, ..., xn be the variables of phi
  for i in 1..n:
    nondeterminstically assign xi to T/F
  if our assignment of x1..xn satsifies phi:
    accept
  else:
    reject
```

Task: Let $L \in NP$. Show that $L \leq_p SAT$.

Task: Let $L \in NP$. Show that $L \leq_p SAT$.

Answer:



Worksheet time!

How to show a language *L* is NP-complete

- 1. Show $L \in NP$.
- 2. Show that for any language $M \in NP$, we have $M \leq_p L$.
- 2. is hard! Usually, we can just do the following instead:
 - 1. Show $L \in NP$.
 - 2. Find a known NP-complete language M (such as SAT), and show that $\leq_p L$.