In this worksheet, we outline a proof that SAT is NP-Complete (known as the Cook-Levin Theorem) (from Wikipedia). This proof has two parts.

1. SAT \in NP.

2. SAT is *NP*-hard: Any language $L \in NP$ will satisfy $L \leq_p SAT$.

Exercise 1. Show that $SAT \in NP$. That is, build a poly-time nondeterministic Turing machine that decides SAT.

SAT is NP-hard

Let $L \in NP$. We will show that $L \leq_p SAT$ by constructing a poly-time computable function f such that $x \in L \Leftrightarrow f(x) \in SAT.$

Since $L \in NP$, there is a poly-time nondeterministic Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ that decides L. Since M is poly-time, we may assume M halts in $\leq p(n)$ steps on any input of size n (where p(n) is some polynomial). We will make use of the following lemma:

Lemma. Suppose M(x) finishes executing in p(n) steps. Then during execution, only cells -p(n) to p(n) could have been accessed during execution; cells $-\infty$ to -p(n) - 1, and cells p(n) + 1 to ∞ are inaccessible to the read/write head.

Exercise 2. Briefly justify the Lemma. *Hint: How long does it take to move the read/write head?*

The Lemma guarantees that if M is given an input x of size n, then throughout M(x)'s execution, only cells -p(n) to p(n) can be overwritten.

Now, given an input *x*, we will define the following collections of variables:

Variables	Range	Intended Interpretation
$T_{i,j,k}$	$-p(n) \le i \le p(n), j \in \Sigma, 0 \le k \le p(n)$	Cell i has symbol j at step k of execution.
$H_{i,k}$	$-p(n) \leq i \leq p(n)$, $0 \leq k \leq p(n)$	The read/write head is at cell i at step k of execution.
$Q_{q,k}$	$q \in Q$, $0 \le k \le p(n)$	The NTM is at state q at step k of execution.

Table 1: Variables and their intended interpretations

Exercise 3. Suppose *M* is the *deterministic* Turing machine below (with $\Sigma = \{a, b\}$). You may assume that M(x)halts in p(n) = n + 1 steps or less.

Execute *M* on the input x = bba (so *M* halts in p(n) = 3 + 1 = 4 steps), and label the variables below with their intended interpretations (consulting Table 1).

-5 -4 -3 -2 -1 0 1 2 3 4 5

						b	b	a					
						Hea	ıd						
Variable	Value	Variable	Val	ue	_	Va	aria	ble	V	/alu	e	Variable	Value
$T_{0,a,0}$	F	$T_{3,\Box,2}$					$H_{0,0}$	0		Т		$Q_{q_0,0}$	Т
$T_{1,b,0}$	Т	$T_{-2,\Box,2}$					$H_{1,0}$	0		F		$Q_{q_1,0}$	F
$T_{2,b,0}$	F	$T_{2,b,2}$					$H_{1,}$	1		Т		$Q_{q_1,1}$	F
$T_{0,a,1}$		$T_{0,a,3}$					$H_{2,2}$	1				$Q_{q_1,2}$	
$T_{1,a,1}$		$T_{1,a,4}$					$H_{2,2}$	2				$Q_{q_1,3}$	
$T_{2,a,2}$		$T_{2,a,4}$					$H_{3,3}$	3				$Q_{q_{\rm acc},4}$	
						1							

In Table 1, there are:

- $(2p(n)+1) \cdot |\Sigma| \cdot (p(n)+1) = \mathcal{O}(p(n)^2)$ variables of the form $T_{i,j,k}$.
- $(2p(n) + 1) \cdot (p(n) + 1) = \mathcal{O}(p(n)^2)$ variables of the form $H_{i,k}$.
- $|Q| \cdot (p(n) + 1) = \mathcal{O}(p(n))$ variables of the form $Q_{q,k}$.

In total, we have created $\mathcal{O}(p(n)^2)$ variables given an input x of size n.

Recall that we want to create a poly-time computable f so that $x \in L \Leftrightarrow f(x) \in SAT$. In other words, given an x, we want to create a boolean formula f(x) in polynomial time, so that f(x) is satisfiable iff $x \in L$. Here's how we create this boolean formula f(x):

- The variables of this boolean formula are the $T_{i,j,k}$'s, the $H_{i,k}$'s, and the $Q_{q,k}$'s, as defined in Table 1. There are $\mathcal{O}(p(n)^2)$ variables.
- The formula is the *conjunction* (\wedge) of all of the following boolean subformulae (with $-p(n) \le i \le p(n)$, $0 \le k \le p(n)$):

Formulae	Range	Interpretation	How many formulae?		
$T_{i,j,0}$	$j \in \Sigma$ cell <i>i</i> initially contains symbol <i>j</i>	Initial contents of the tape	$\mathcal{O}(p(n))$		
$Q_{q_0,0}$		TM starts in state q_0	1		
$H_{0,0}$		R/W head starts at cell 0	1		
$\overline{ \neg T_{i,j,k} \vee \neg T_{i,j',k} }$	$j, j' \in \Sigma$ with $j \neq j'$	At most 1 symbol per cell	$\mathcal{O}(p(n)^2)$		
$\frac{\displaystyle\bigvee_{i\in\Sigma}T_{i,j,k}}{\displaystyle\bigvee}$		At least 1 symbol per cell	$\mathcal{O}(p(n)^2)$		
$\frac{1}{T_{i,j,k} \land T_{i,j',k+1} \to H_{i,k}}$	$j,j'\in\Sigma$ with $j\neq j'$	To change cell <i>i</i> , head must be at cell <i>i</i>	$\mathcal{O}(p(n)^2)$		
$\boxed{ \neg Q_{q,k} \lor \neg Q_{q',k} }$	$q,q' \in Q$ with $q \neq q'$	Only one state at a time	$\mathcal{O}(p(n))$		
$\neg H_{i,k} \lor \neg H_{i',k}$	i eq i'	Only one head position at a time	$\mathcal{O}(p(n)^3)$		
$ \begin{pmatrix} H_{i,k} \land Q_{q,k} \land T_{i,j,k} \end{pmatrix} \rightarrow \\ \bigvee_{\substack{(q,j), (q',j',d) \in \delta}} \begin{pmatrix} H_{i+d,k+1} \\ \land Q_{q',k+1} \\ \land T_{i,j',k+1} \end{pmatrix} $	$j \in \Sigma$ $q \in Q$ k eq p(n)	Non-deterministic transition function δ is obeyed	$\mathcal{O}(p(n)^2)$		
$\bigvee_{0 \le k \le p(n)} Q_{q_{\rm acc},k}$		Accepting state q_{acc} reached within $p(n)$ steps	1		

Table 2: f(x) is the conjunction (\wedge) of all of the following subformulae.

Notice that this huge boolean formula f(x) is satisfiable iff $x \in L$:

- If f(x) is satisfiable, then there is some execution path in M(x) that ends in the accepting state q_{acc} . It follows from the definition (since M is a nondeterministic decider for L) that $x \in L$.
- If $x \in L$, then there is some execution path in M(x) leading to acceptance. We may then assign the $T_{i,j,k}$'s, the $H_{i,k}$'s, and the $Q_{q,k}$'s according to their intended interpretation to satisfy f(x).

f(x) takes $\mathcal{O}(p(n)^3)$ time to produce, and since p(n) is polynomial, so is $p(n)^3$. Thus f is indeed poly-time computable. This shows $L \leq_p \text{SAT}$. \Box

Exercise 4. Referring back to the Turing machine M in Exercise 3, M accepts the input x = bba.

- (a) List the variables in f(x) (consulting Table 1).
- (b) Write down the boolean formula f(x) (consulting table 2).