
CSC363 Tutorial #2
Turing machines and stuff

January 26, 2022
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Learning objectives this tutorial

▶ Prove that some functions are primitive recursive.

▶ Prove more functions are primitive recursive.

▶ Talk about “computable sets”.
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A bit about myself?
Hi! I’m some 4th year student studying math/cs. I was sick last week ;w;

▶ Contact: pol.zhang@utoronto.ca, or if you prefer Discord, sjorv#0943

▶ Hobbies: Gaming, taking naps at inappropriate times

Not my cat. Cats are cute though.

▶ Favourite food: sushi juice

▶ Office hours: 1-2pm Friday

▶ Website (you can find tutorial slides there): sjorv.github.io
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PRIM

Question: What does PRIM stand for?

Question: What are the initial functions in PRIM?
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PRIM
Recall that PRIM is a set of functions from Nk to N, intuitively meant to
capture what a “computable” function is.

Keep this definition handy!
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Constant functions are in prim

Task: Prove that fk : N → N, given by fk(n) = k for all n ∈ N, is primitive
recursive.

Ans: We know 0 (the zero function) and S (the successor function) are
primitive recursive, from (a) and (b). Thus repeatedly applying the
substitution rule (d),

fk(n) = S(S(. . . (S(︸ ︷︷ ︸
k times

0(n))) . . .))

is primitive recursive.
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Addition is in prim

Recall from Lecture 2: the addition function + : N2 → N,
+(m, n) = m + n, is in PRIM.

Informal Proof:
+(x , 0) = x ,

+(x , n + 1) = S(+(x , n))

so using the rule of primitive recursion (e), + is primitive recursive.
Formal Proof: We have

+(x , 0) = P1
1 (x),

+(x , n + 1) = g(x , n,+(x , n))

where g(a, b, c) = S(P3
3 (a, b, c)) is primitive recursive by the substitution

rule.
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Multiplication is in PRIM

Task: Now that we know + is in PRIM, prove that the multiplication
function × : N2 → N, ×(m, n) = mn, is in PRIM.

Informal Proof:
×(x , 0) = 0,

×(x , n + 1) = +(×(x , n), x)

so using the rule of primitive recursion (e), × is primitive recursive.
Formal Proof: We have

×(x , 0) = 0(x),

×(x , n + 1) = g(x , n,×(x , n))

where g(a, b, c) = +(P3
1 (a, b, c),P

3
3 (a, b, c)) is primitive recursive by the

substitution rule, since we’ve proven + is primitive recursive.
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“Subtraction” is in PRIM

Task: Show that δ : N → N, δ(n) =

{
n − 1 n ≥ 1

0 n = 0
is in PRIM.

Hint: Define f (x , n) =

{
n − 1 n ≥ 1

0 n = 0
(basically ignoring the first

parameter). If we show f is primitive recursive, then δ(n) = f (n, n) is
primitive recursive by the substitution rule.

Proof: Define f as in the hint. We have

f (x , 0) = 0(x),

f (x , n + 1) = P3
2 (x , n, f (x , n)) (= n)

so f is primitive recursive. Thus δ(n) = f (n, n) is primitive recursive by
substitution rule.
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“Subtraction” is in PRIM

Unfortunately, we can’t define actual subtraction as a function from N2 to
N! We are only allowed to output natural numbers :(

Task: Show that −̇ : N2 → N, −̇(x , y) =

{
x − y x ≥ y

0 x < y
is primitive

recursive.
Hint: primitive recursion, using δ from before!
Proof: We have

−̇(x , 0) = P1
1 (x),

−̇(x , n + 1) = δ(−̇(x , n))

so −̇ is primitive recursive.
we’re being a little informal here! but hopefully you can translate this into a “formal proof” as before.
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What is in PRIM?
So far, we’ve shown the following are in PRIM:
▶ Any constant function fk .
▶ Addition, multiplication.
▶ “Subtraction” (which doesn’t go below zero, to make N happy).

What about the following functions?
▶ Absolute difference (x , y) 7→ |x − y |.
▶ The “is zero?” function (inverse sign function):

sg(x) =

{
1 x = 0

0 x ̸= 0.

▶ The “is not zero” function (sign function):

sg(x) =

{
0 x = 0

1 x ̸= 0.

They are all primitive recursive!
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DISCLAIMER!!!!

I’m about to lie to you.
In our upcoming definition of a “computable set”, we only assume PRIM
functions are “computable”. This is not true! There are functions not in
PRIM that are also computable, such as the Ackermann function.

So in reality, there are computable sets out there that don’t fit our
definition of “computable set”. Explaining this will require week 3 lecture
material...
Either way, every “computable set” from our definition will turn out to be
“computable” in the actual definition.
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Computable sets

Consider S ⊆ N. How do we define the statement “S is computable”, in
terms of primitive recursion?

A natural way would be to define “S is computable” by looking at its
characteristic function χS : N → N, given by

χS(n) =

{
0 n /∈ S

1 n ∈ S .

Definition: A set S ⊆ N is computable when its characteristic function
χS is primitive recursive.1

Task: Show that the empty set is computable.
Ans: The empty set’s characteristic function is just the zero function,
which is primitive recursive.

1I am lying to you here! The actual definition uses “recursive” instead of “primitive
recursive”, and “recursive” constitutes a larger class of functions. You’ll learn (or have
learned) about it in this week’s lecture.
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Computable sets

Task: Show that the singleton set {0} is computable.

Ans: The characteristic function of {0} is just the inverse sign function

sg(x) =

{
1 x = 0

0 x ̸= 0.

which, as we have shown, is computable.

14 / 19



Computable sets

Task: Show that the singleton set {0} is computable.
Ans: The characteristic function of {0} is just the inverse sign function

sg(x) =

{
1 x = 0

0 x ̸= 0.

which, as we have shown, is computable.

14 / 19



Computable sets

Task: Show that any singleton set {k}, with k ∈ N is computable.

Ans: The absolute difference (x , y) 7→ |x − y | is primitive recursive. Thus

sg(|x − k |) =

{
1 x = k

0 x ̸= k

is primitive recursive. But this is just the characteristic function of {k}!
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Computable sets

Task: Show that any finite set {k1, . . . , km}, with k1, . . . , km ∈ N, is
computable.

Ans: What if we added the indicator functions of each singleton set
{k1}, . . . , {km}? Notice that

sg(|x − k1|) + . . .+ sg(|x − km|) > 0

if and only if x is in {k1, . . . , km}. Thus

sg(sg(|x − k1|) + . . .+ sg(|x − km|)) = 1

if and only if x is in {k1, . . . , km}, so our characteristic function is
primitive recursive.
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Computable sets

Task: Suppose S1, S2 ⊆ N are both computable. Show that S1 ∪ S2 is
computable.

Ans: Add the indicator functions!

sg(χS1(x) + χS2(x)) = 1

if and only if x is in S1 or x is in S2, so our characteristic function is
primitive recursive.
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Computable sets

What other sets are computable?

▶ The even numbers {0, 2, 4, . . .}. (Prove the remainder function
(x , y) 7→ x%y is in PRIM!)

▶ The prime numbers.

▶ Pretty much every set that ever comes up in number theory!
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What’s this all about?

We’re trying to build a mathematical definition of “computable”, from
multiple different perspectives:

▶ Computation with Turing machines;

▶ Computation with URMs (briefly);

▶ Computation with primitive recursive functions;

▶ Computation with Lambda Calculus Oh no! We’re not gonna cover
this unfortunately :(2

These all turn out to give an “equivalent” definition of what is
computable. Fundamentally, there are things that computers cannot do,
regardless of the framework of computation we use!
Primitive recursion is probably the most “abstract” and thus the hardest
to grasp intuitively, but it is worthwhile from a historical perspective.

2Unless the curriculum changes, that is.
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