
CSC363 Tutorial #4
Turing reductions! (and some assignment feedback)

February 09, 2022
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Learning objectives this tutorial

▶ Review (hopefully, if you remember) Turing reductions.

▶ Learn (or review, if you’ve attended the Monday lecture)
m-reductions and 1-reductions.

▶ Distinguish between Turing reductions, m-reductions, and
1-reductions.
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Assignment 1 stuff
Assignment 1 feedback has been posted to Pizza.
Please read through it! Some common mistakes throughout (also
appearing on Assignment 2):

▶ Given a CE set S , we might not be able to determine if an arbitrary
x ∈ N is in S or not (unless we can assume S is computable). The
best we can do is confirm that x ∈ S , and loop otherwise (by printing
out elements of S until we find x). Thus, some condition like “if
x ∈ S” might cause your program to get stuck.

▶ Sometimes, the solution proves a completely different (and maybe
more trivial) statement. Make sure to reiterate what you are trying to
prove, so that you don’t lose track!
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Turing reductions!
Task: Show that K = {x : φx(x) halts} is computable!

Ans: That’s kinda impossible...
But what if some person comes along and gives you this black box (or
oracle) that tells you whether something is in K? This would probably break some law of
the universe, but still
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Turing reductions!

But what if some person comes along and gives you this black box (or
oracle) that tells you whether something is in K?

Is K now computable?

Yes, because now we can check if something is in
K or not by just feeding it into this black box.
What about K̄? Without Eminem’s help, K̄ is not even CE. Is it now
computable? Yes, because we can again use this box to determine if
something is in K̄ (so not in K ) or not.
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Turing reductions!

If we can compute (the indicator of) K , then we can compute K̄ . So in
some sense, K is at least as hard to compute as K : once we are able to
compute K , we will also be able to compute K̄ . We can reduce the
problem of computing K̄ to the problem of computing K .

Definition: Let A,B ⊆ N be sets. We say that A Turing reduces to B,
written A ≤T B, if we can compute A given a black box for B.

You may think of A ≤T B as saying “A is less difficult than B”, in that we
can reduce the problem of computing A into the problem of computing B.
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Turing reductions!

Definition: Let A,B ⊆ N be sets. We say that A Turing reduces to B,
written A ≤T B, if we can compute A given a black box for B.

Task: Let S be a computable set. Briefly explain why S ≤T K .

Ans: Since S is computable, given a black box for K , we can just throw
away the black box and compute S directly!
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Turing reductions!

Definition: Let A,B ⊆ N be sets. We say that A Turing reduces to B,
written A ≤T B, if we can compute A given a black box for B.

Task: Let K = {x : ϕx(x) halts}, and

H = {(x , e) : ϕe(x) halts}.

Show that K ≤T H.

Ans: Given a black box for H, we can compute K using the following
procedure:

def is_in_K(x):

if (x, x) in H:

return True

else: return False
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Turing reductions!
Task: Let K = {x : ϕx(x) halts}, and H = {(x , e) : ϕe(x) halts}. Show
that H ≤T K . This is a bit trickier!

Ans: Given a black box for K , we can compute H using the following
procedure:

def is_in_H(x, e):

Construct the TM M that does the following:

M(y):

(ignore y)

Run the eth Turing machine on x

Return if it halts

Let z be the Turing Machine # of M

if z in K:

return True

else: return False

Notice: We construct M, but we don’t actually run it! Running M might
result in a loop.
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Turing reductions!

Definition: If A ≤T B and B ≤T A, we say that A is Turing equivalent
to B, and write A =T B.

In some sense, this says A is equivalent in computational difficulty to B: if
we can compute one, then we can also compute the other.
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m-reductions...
We’ll introduce another reduction mechanism, called an m-reduction.
Definition: Let A,B be sets. We say that A ≤m B if there exists a
computable function f such that

x ∈ A ⇔ f (x) ∈ B.

stolen from https://liyanxu.blog/2019/05/06/mapping-reducibility-turing-reducibility-kolmogorov-complexity/
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m-reductions...

Definition: Let A,B be sets. We say that A ≤m B if there exists a
computable function f such that

x ∈ A ⇔ f (x) ∈ B.

It turns out that m-reduction is stronger than Turing reduction: if
A ≤m B, then A ≤T B. However, there do exists sets A,B such that
A ≤T B but not A ≤m B.

Task: Show that if A ≤m B, then A ≤T B. Hint: Write out the meaning
of each of those definitions.
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m-reductions...

Definition: Let A,B be sets. We say that A ≤m B if there exists a
computable function f such that

x ∈ A ⇔ f (x) ∈ B.

Task: Show that if A ≤m B, then A ≤T B. Hint: Write out the meaning
of each of those definitions.
Ans: Suppose A ≤m B. Then there exists a computable function f such
that

x ∈ A ⇔ f (x) ∈ B.

To show A ≤T B, suppose we are given a black box for B. We can
compute A as follows:

def is_in_A(x):

return True if f(x) in B, False otherwise.
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m-reductions...

Task: Show that ∅ ≤T N, but not ∅ ≤m N.

Ans: ∅ is computable, so we automatically get ∅ ≤T N by just tossing
away the black box for N. However, there is no computable function f
such that

x ∈ ∅ ⇔ f (x) ∈ N.

This is because there isn’t even any function f that satisfies the above,
regardless of computability of f ! (Why?)
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m-reductions...

So what we have just shown is that A ≤m B ⇒ A ≤T B, but
A ≤T B ̸⇒ A ≤m B. Thus, we may show Turing reducibility by showing
m-reducibility, but not necessarily the other way around.

Task: Let S ⊆ N be computable, and T ⊆ N be any arbitrary set
satisfying T ̸= ∅ and T ̸= N. Show that S ≤m T .

Ans: Since T ̸= ∅, there is some p ∈ T . Since T ̸= N, there is some
q ∈ N, q /∈ T . Define f by

f (x) =

{
p x ∈ S

q x /∈ S .

Since S is computable, so is f . Furthermore, x ∈ S ⇔ f (x) ∈ T .
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