CSC363 Tutorial $#6$ NTMs. Guess the meaning of this acronym.

March 2, 2022

Learning objectives this tutorial

- Learn the formal definition of a Nondeterministic Turing Machine.
- ▶ Understand how Nondeterministic TMs accept and reject inputs, and why this gives NTMs an unfair advantage over vanilla TMs.
- ▶ Understand how, in the end, both NTMs and TMs are equivalent in some ways, but different in other ways.

Assignment tips

- Come to office hours! We may be able to drop some hints there.
- Read Cooper's book! Although everything you need is covered in the slides, the book goes through it more slowly.¹ The book contains many more examples.

 \triangleright Specifically, chapter 7 will really help with the assignment.

If you do not have the book, please, *do not* try to download this illegally, such as through pirating.

¹Personally, when learning the course material, I found Cooper's book to be extremely helpful.

Task: Fill in

A Turing Machine is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ where:

- \triangleright Q is ...
- \blacktriangleright \sum is ...
- \blacktriangleright $\overline{}$ is ...
- \triangleright δ : ... \rightarrow ... is the transition function.
- \blacktriangleright q_0 is ...
- \blacktriangleright q_{accept} is ...
- \blacktriangleright q_{reject} is ...

A Turing Machine is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ where:

- \triangleright Q is the set of states.
- $\blacktriangleright \Sigma$ is the *input alphabet*.
- \blacktriangleright Γ is the *tape alphabet* (and satisfies $\Gamma \subseteq \Sigma$).
- \triangleright δ : $(Q \times \Gamma) \rightarrow (Q \times \Gamma \times \{L, R\})$ is the transition function.
- ρ q₀ is the starting state.
- \triangleright q_{accept} is the accept state.
- \triangleright q_{reject} is the reject state.

A Nondeterministic Turing Machine is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ where:

- \triangleright Q is the set of states.
- \triangleright \triangleright \triangleright is the *input alphabet.*
- \blacktriangleright Γ is the *tape alphabet* (and satisfies $\lceil \subseteq \Sigma \rceil$.
- \triangleright $\delta \subseteq (Q \times \Gamma) \times (Q \times \Gamma \times \{L, R\})$ is the transition relation.
- ρ q₀ is the starting state.
- \triangleright q_{accept} is the accept state.
- \blacktriangleright q_{reject} is the reject state.

Task: What changed, compared to the original Turing Machine definition?

²Recall that a relation R between A and B is a subset of $A \times B$. A function from A to B is a relation between A and B where for each $a \in A$, there exists a unique $b \in B$ such that (a, b) is in the relation.

A Nondeterministic Turing Machine is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ where:

- \triangleright Q is the set of states.
- \triangleright \triangleright \triangleright is the *input alphabet.*
- \blacktriangleright Γ is the *tape alphabet* (and satisfies $\lceil \subseteq \Sigma \rceil$.
- \triangleright $\delta \subseteq (Q \times \Gamma) \times (Q \times \Gamma \times \{L, R\})$ is the transition relation.
- ρ q₀ is the starting state.
- \triangleright q_{accept} is the accept state.
- \blacktriangleright q_{reject} is the reject state.

Task: What changed, compared to the original Turing Machine definition? Ans: δ is no longer a transition *function*! It is a transition *relation*.²

²Recall that a relation R between A and B is a subset of $A \times B$. A function from A to B is a relation between A and B where for each $a \in A$, there exists a unique $b \in B$ such that (a, b) is in the relation.

The difference between a NTM and TM can be viewed as parallel to the difference between a DFA and NFA (from CSC236). In a NTM's transition table, we may have multiple different transitions for the same state and same character.

The difference between a NTM and TM can be viewed as parallel to the difference between a DFA and NFA (from CSC236). In a NTM's transition table, we may have multiple different transitions for the same state and same character.

A NTM M accepts input x when M has some execution path that ends in q_{accept} . Otherwise:

- If some execution path ends in q_{reject} , M rejects input x. (Note: Check that M doesn't accept the input first!)
- Otherwise, it loops.

The difference between a NTM and TM can be viewed as parallel to the difference between a DFA and NFA (from CSC236). In a NTM's transition table, we may have multiple different transitions for the same state and same character.

A NTM M accepts input x when M has some execution path that ends in q_{accept} . Otherwise:

- **E** If some execution path ends in q_{reject} , M rejects input x. (Note: Check that M doesn't accept the input first!)
- \triangleright Otherwise, it loops.

In some sense, think of NTMs like job applications. If you have one job offer, you're good! Otherwise :(

A NTM M accepts input x when M has some execution path that ends in q_{accept} . Otherwise:

- \triangleright If some execution path ends in q_{reject} , M rejects input x. (Note: Check that M doesn't accept the input first!)
- \triangleright Otherwise, it loops.

In some sense, think of NTMs like job applications. If you have one job offer, you're good! Otherwise :(

NTMs have multiple different "execution paths".

Task: Let $S = \{5, 7, 11, 12, 14\}$. Can you find a subset $S' \subseteq S$ such that S ′ sums to 24? What about 27?

Task: Let $S = \{5, 7, 11, 12, 14\}$. Can you find a subset $S' \subseteq S$ such that S ′ sums to 24? What about 27?

Ans: There is a subset that sums to 24, namely $\{5, 7, 12\}$. There are no subsets that sum to 27, on the other hand.

Task: Let $S = \{5, 7, 11, 12, 14\}$. Can you find a subset $S' \subseteq S$ such that S ′ sums to 24? What about 27?

Ans: There is a subset that sums to 24, namely $\{5, 7, 12\}$. There are no subsets that sum to 27, on the other hand.

This is a specific case of the **subset sum problem**. Given a finite set of natural numbers S and a *target t* \in $\mathbb N,$ can we find a $S' \subseteq S$ such that S' sums to t ?

Task: Let $S = \{5, 7, 11, 12, 14\}$. Can you find a subset $S' \subseteq S$ such that S ′ sums to 24? What about 27?

Ans: There is a subset that sums to 24, namely $\{5, 7, 12\}$. There are no subsets that sum to 27, on the other hand.

This is a specific case of the **subset sum problem**. Given a finite set of natural numbers S and a *target t* \in $\mathbb N,$ can we find a $S' \subseteq S$ such that S' sums to t ?

Task: Write a function subset_sum(S, t) that returns True iff S has a subset that sums to t , using pseudocode.

Task: Write a function subset_sum(S, t) that returns True iff S has a subset that sums to t , using pseudocode. Ans:

```
def subset_sum(S, t):
for every subset S' of S:
  if S' sums to t:
    return True
return False
```
Task: What is the runtime of subset_sum(S, t), in terms of $|S|$ (the size of S)?

Task: Write a function subset_sum(S, t) that returns True iff S has a subset that sums to t , using pseudocode. Ans:

```
def subset_sum(S, t):
for every subset S' of S:
  if S' sums to t:
    return True
return False
```
Task: What is the runtime of subset_sum(S, t), in terms of $|S|$ (the size of *S*)? **Ans:** It is $O(2^{|S|})$.

boss make a dollar. I make a dime. that's why my algorithms run in exponential time

3:36 PM · May 8, 2021 · Twitter Web App

502 Retweets 16 Quote Tweets 3,980 Likes

Task: Write a function subset_sum(S, t) that returns True iff S has a subset that sums to t , using pseudocode. Make sure to do it in polynomial time!

Ans:

(we don't know if it's possible or not) $11/14$

Wait! What about the following code? Does this solve subset sum?

```
def subset_sum_2(S, t):
choose a random subset S' of S
if S' sums to t:
  return True
return False
```


Wait! What about the following code? Does this solve subset sum?

```
def subset_sum_2(S, t):
choose a random subset S' of S
if S' sums to t:
  return True
return False
```
Of course not! But subset_sum_2 is not entirely useless. If we're lucky and $\texttt{subset_sum_2}$ returns True, then indeed, there is a subset S' that sums to t. If it returns False instead, we don't know anything...

This process of choosing a "random" S' may be implemented in a NTM. The NTM will simultaneously choose all particular subsets S' , and accept if and only if one execution path returns True.

```
def subset_sum_ntm(S, t):
choose a particular subset S' of S
if S' sums to t:
  return True
return False
```
And it runs in linear time (in terms of the maximum execution length)! Unfortunately we can't implement this in real life... :(

 $f(n)$ is the execution length.

Conclusion: The subset sum problem can be solved in linear time by a NTM. However, we don't know if we can solve the subset sum problem with a TM.³

 3 This amounts to solving the P = NP problem; we will explain how later in this course.

Conclusion: The subset sum problem can be solved in linear time by a NTM. However, we don't know if we can solve the subset sum problem with a TM.³

Question: Disregarding runtime, is there any problem that a NTM can solve, but a TM can't solve?

³This amounts to solving the P $=$ NP problem; we will explain how later in this course.

Conclusion: The subset sum problem can be solved in linear time by a NTM. However, we don't know if we can solve the subset sum problem with a TM.³

Question: Disregarding runtime, is there any problem that a NTM can solve, but a TM can't solve?

Ans: No! This is because we can simulate a NTM on a TM.

def simulate_NTM(ntm, input): while True: execute ntm(input) one step. if there are multiple possible transitions, spawn a thread here to simulate each possible transition

In the same way DFAs can recognize any languages that NFAs recognize, TMs can solve any problem that a NTM can solve (but the TM may be much slower).

 3 This amounts to solving the P = NP problem; we will explain how later in this course.