
CSC363 Tutorial #6
NTMs. Guess the meaning of this acronym.

March 2, 2022

1 / 14

Learning objectives this tutorial

▶ Learn the formal definition of a Nondeterministic Turing Machine.

▶ Understand how Nondeterministic TMs accept and reject inputs, and
why this gives NTMs an unfair advantage over vanilla TMs.

▶ Understand how, in the end, both NTMs and TMs are equivalent in
some ways, but different in other ways.

2 / 14

Assignment tips
▶ Come to office hours! We may be able to drop some hints there.
▶ Read Cooper’s book! Although everything you need is covered in the

slides, the book goes through it more slowly.1 The book contains
many more examples.
▶ Specifically, chapter 7 will really help with the assignment.

If you do not have the book, please, do not try to download this
illegally, such as through pirating.

1Personally, when learning the course material, I found Cooper’s book to be
extremely helpful.

3 / 14

(Deterministic) Turing Machines

Task: Fill in

A Turing Machine is a 7-tuple (Q,Σ, Γ, δ, q0, qaccept, qreject) where:

▶ Q is . . .

▶ Σ is . . .

▶ Γ is . . .

▶ δ : . . . → . . . is the transition function.

▶ q0 is . . .

▶ qaccept is . . .

▶ qreject is . . .

4 / 14

(Deterministic) Turing Machines

A Turing Machine is a 7-tuple (Q,Σ, Γ, δ, q0, qaccept, qreject) where:

▶ Q is the set of states.

▶ Σ is the input alphabet.

▶ Γ is the tape alphabet (and satisfies Γ ⊆ Σ).

▶ δ : (Q × Γ) → (Q × Γ× {L,R}) is the transition function.

▶ q0 is the starting state.

▶ qaccept is the accept state.

▶ qreject is the reject state.

5 / 14

(Nondeterministic) Turing Machines

A Nondeterministic Turing Machine is a 7-tuple
(Q,Σ, Γ, δ, q0, qaccept, qreject) where:

▶ Q is the set of states.

▶ Σ is the input alphabet.

▶ Γ is the tape alphabet (and satisfies Γ ⊆ Σ).

▶ δ ⊆ (Q × Γ)× (Q × Γ× {L,R}) is the transition relation.

▶ q0 is the starting state.

▶ qaccept is the accept state.

▶ qreject is the reject state.

Task: What changed, compared to the original Turing Machine definition?

Ans: δ is no longer a transition function! It is a transition relation.2

2Recall that a relation R between A and B is a subset of A× B. A function from A
to B is a relation between A and B where for each a ∈ A, there exists a unique b ∈ B
such that (a, b) is in the relation.

6 / 14

(Nondeterministic) Turing Machines

A Nondeterministic Turing Machine is a 7-tuple
(Q,Σ, Γ, δ, q0, qaccept, qreject) where:

▶ Q is the set of states.

▶ Σ is the input alphabet.

▶ Γ is the tape alphabet (and satisfies Γ ⊆ Σ).

▶ δ ⊆ (Q × Γ)× (Q × Γ× {L,R}) is the transition relation.

▶ q0 is the starting state.

▶ qaccept is the accept state.

▶ qreject is the reject state.

Task: What changed, compared to the original Turing Machine definition?
Ans: δ is no longer a transition function! It is a transition relation.2

2Recall that a relation R between A and B is a subset of A× B. A function from A
to B is a relation between A and B where for each a ∈ A, there exists a unique b ∈ B
such that (a, b) is in the relation.

6 / 14

(Nondeterministic) Turing Machines

The difference between a NTM and TM can be viewed as parallel to the
difference between a DFA and NFA (from CSC236). In a NTM’s transition
table, we may have multiple different transitions for the same state and
same character.

A NTM M accepts input x when M has some execution path that ends
in qaccept. Otherwise:

▶ If some execution path ends in qreject, M rejects input x . (Note:
Check that M doesn’t accept the input first!)

▶ Otherwise, it loops.

In some sense, think of NTMs like job applications. If you have one job
offer, you’re good! Otherwise :(

7 / 14

(Nondeterministic) Turing Machines

The difference between a NTM and TM can be viewed as parallel to the
difference between a DFA and NFA (from CSC236). In a NTM’s transition
table, we may have multiple different transitions for the same state and
same character.

A NTM M accepts input x when M has some execution path that ends
in qaccept. Otherwise:

▶ If some execution path ends in qreject, M rejects input x . (Note:
Check that M doesn’t accept the input first!)

▶ Otherwise, it loops.

In some sense, think of NTMs like job applications. If you have one job
offer, you’re good! Otherwise :(

7 / 14

(Nondeterministic) Turing Machines

The difference between a NTM and TM can be viewed as parallel to the
difference between a DFA and NFA (from CSC236). In a NTM’s transition
table, we may have multiple different transitions for the same state and
same character.

A NTM M accepts input x when M has some execution path that ends
in qaccept. Otherwise:

▶ If some execution path ends in qreject, M rejects input x . (Note:
Check that M doesn’t accept the input first!)

▶ Otherwise, it loops.

In some sense, think of NTMs like job applications. If you have one job
offer, you’re good! Otherwise :(

7 / 14

(Nondeterministic) Turing Machines
A NTM M accepts input x when M has some execution path that ends
in qaccept. Otherwise:
▶ If some execution path ends in qreject, M rejects input x . (Note:

Check that M doesn’t accept the input first!)
▶ Otherwise, it loops.

In some sense, think of NTMs like job applications. If you have one job
offer, you’re good! Otherwise :(

NTMs have multiple different “execution paths”.
8 / 14

Subset Sum

Task: Let S = {5, 7, 11, 12, 14}. Can you find a subset S ′ ⊆ S such that
S ′ sums to 24? What about 27?

Ans: There is a subset that sums to 24, namely {5, 7, 12}. There are no
subsets that sum to 27, on the other hand.

This is a specific case of the subset sum problem. Given a finite set of
natural numbers S and a target t ∈ N, can we find a S ′ ⊆ S such that S ′

sums to t?

Task: Write a function subset sum(S, t) that returns True iff S has a
subset that sums to t, using pseudocode.

9 / 14

Subset Sum

Task: Let S = {5, 7, 11, 12, 14}. Can you find a subset S ′ ⊆ S such that
S ′ sums to 24? What about 27?
Ans: There is a subset that sums to 24, namely {5, 7, 12}. There are no
subsets that sum to 27, on the other hand.

This is a specific case of the subset sum problem. Given a finite set of
natural numbers S and a target t ∈ N, can we find a S ′ ⊆ S such that S ′

sums to t?

Task: Write a function subset sum(S, t) that returns True iff S has a
subset that sums to t, using pseudocode.

9 / 14

Subset Sum

Task: Let S = {5, 7, 11, 12, 14}. Can you find a subset S ′ ⊆ S such that
S ′ sums to 24? What about 27?
Ans: There is a subset that sums to 24, namely {5, 7, 12}. There are no
subsets that sum to 27, on the other hand.

This is a specific case of the subset sum problem. Given a finite set of
natural numbers S and a target t ∈ N, can we find a S ′ ⊆ S such that S ′

sums to t?

Task: Write a function subset sum(S, t) that returns True iff S has a
subset that sums to t, using pseudocode.

9 / 14

Subset Sum

Task: Let S = {5, 7, 11, 12, 14}. Can you find a subset S ′ ⊆ S such that
S ′ sums to 24? What about 27?
Ans: There is a subset that sums to 24, namely {5, 7, 12}. There are no
subsets that sum to 27, on the other hand.

This is a specific case of the subset sum problem. Given a finite set of
natural numbers S and a target t ∈ N, can we find a S ′ ⊆ S such that S ′

sums to t?

Task: Write a function subset sum(S, t) that returns True iff S has a
subset that sums to t, using pseudocode.

9 / 14

Subset Sum
Task: Write a function subset sum(S, t) that returns True iff S has a
subset that sums to t, using pseudocode.
Ans:

def subset_sum(S, t):

for every subset S’ of S:

if S’ sums to t:

return True

return False

Task: What is the runtime of subset sum(S, t), in terms of |S | (the
size of S)?

Ans: It is O(2|S |).

10 / 14

Subset Sum
Task: Write a function subset sum(S, t) that returns True iff S has a
subset that sums to t, using pseudocode.
Ans:

def subset_sum(S, t):

for every subset S’ of S:

if S’ sums to t:

return True

return False

Task: What is the runtime of subset sum(S, t), in terms of |S | (the
size of S)? Ans: It is O(2|S |).

10 / 14

Subset Sum
Task: Write a function subset sum(S, t) that returns True iff S has a
subset that sums to t, using pseudocode. Make sure to do it in polynomial
time!
Ans:

(we don’t know if it’s possible or not) 11 / 14

Subset Sum

Wait! What about the following code? Does this solve subset sum?

def subset_sum_2(S, t):

choose a random subset S’ of S

if S’ sums to t:

return True

return False

Of course not! But subset sum 2 is not entirely useless. If we’re lucky
and subset sum 2 returns True, then indeed, there is a subset S ′ that
sums to t. If it returns False instead, we don’t know anything...

12 / 14

Subset Sum

Wait! What about the following code? Does this solve subset sum?

def subset_sum_2(S, t):

choose a random subset S’ of S

if S’ sums to t:

return True

return False

Of course not! But subset sum 2 is not entirely useless. If we’re lucky
and subset sum 2 returns True, then indeed, there is a subset S ′ that
sums to t. If it returns False instead, we don’t know anything...

12 / 14

Subset Sum
This process of choosing a “random” S ′ may be implemented in a NTM.
The NTM will simultaneously choose all particular subsets S ′, and accept
if and only if one execution path returns True.

def subset_sum_ntm(S, t):

choose a particular subset S’ of S

if S’ sums to t:

return True

return False

And it runs in linear time (in terms of the maximum execution length)!
Unfortunately we can’t implement this in real life... :(

f (n) is the execution length.
13 / 14

Subset Sum

Conclusion: The subset sum problem can be solved in linear time by a
NTM. However, we don’t know if we can solve the subset sum problem
with a TM.3

Question: Disregarding runtime, is there any problem that a NTM can
solve, but a TM can’t solve?
Ans: No! This is because we can simulate a NTM on a TM.

def simulate_NTM(ntm, input):

while True:

execute ntm(input) one step.

if there are multiple possible transitions,

spawn a thread here to simulate each possible transition

In the same way DFAs can recognize any languages that NFAs recognize,
TMs can solve any problem that a NTM can solve (but the TM may be
much slower).

3This amounts to solving the P = NP problem; we will explain how later in this
course.

14 / 14

Subset Sum

Conclusion: The subset sum problem can be solved in linear time by a
NTM. However, we don’t know if we can solve the subset sum problem
with a TM.3

Question: Disregarding runtime, is there any problem that a NTM can
solve, but a TM can’t solve?

Ans: No! This is because we can simulate a NTM on a TM.

def simulate_NTM(ntm, input):

while True:

execute ntm(input) one step.

if there are multiple possible transitions,

spawn a thread here to simulate each possible transition

In the same way DFAs can recognize any languages that NFAs recognize,
TMs can solve any problem that a NTM can solve (but the TM may be
much slower).

3This amounts to solving the P = NP problem; we will explain how later in this
course.

14 / 14

Subset Sum

Conclusion: The subset sum problem can be solved in linear time by a
NTM. However, we don’t know if we can solve the subset sum problem
with a TM.3

Question: Disregarding runtime, is there any problem that a NTM can
solve, but a TM can’t solve?
Ans: No! This is because we can simulate a NTM on a TM.

def simulate_NTM(ntm, input):

while True:

execute ntm(input) one step.

if there are multiple possible transitions,

spawn a thread here to simulate each possible transition

In the same way DFAs can recognize any languages that NFAs recognize,
TMs can solve any problem that a NTM can solve (but the TM may be
much slower).

3This amounts to solving the P = NP problem; we will explain how later in this
course.

14 / 14

