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Learning objectives this tutorial

▶ Formulate the Hamiltonian Cycle Problem, and then the Hamiltonian
Path Problem.

▶ Show that the Hamiltonian Cycle Problem (and the Hamiltonian Path
Problem) can be decided by a NTM in poly-time.

▶ Show that the Hamiltonian Cycle Problem (and the Hamiltonian Path
Problem) can be verified in poly-time.
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Some Clarifications

▶ When we say that a TM M runs in f (n)-time, we mean the following:
For all inputs of length n (in terms of number of characters), the
computation M(n) halts within f (n) steps.

▶ When we say that a language L is decidable in f (n)-time, we mean
that there is some TM that decides L in f (n)-time.
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Hamilton
Question: Who’s this person?

Ans: Sir William Rowan Hamilton, LL.D, DCL, MRIA, FRAS.
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Hamilton Lore

List of things attributed to Sir William Rowan Hamilton, LL.D, DCL,
MRIA, FRAS :

▶ Quaternions. (Think complex numbers a+ bi with i2 = −1 aren’t
enough? Introducing 4-dimensional numbers a+ bi + cj + dk with
i2 = j2 = k2 = ijk = −1!)

▶ Physics, specifically Hamiltonian Mechanics. i dont know what this is

▶ Astronomy. i dont know astronomy either

▶ Some graph theory.

▶ Other uninteresting stuff
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Hamilton Lore

Around Broom Bridge, Dublin. Vandalized many times, of course.

There’s also a Hamilton Walk event that takes place every year from
Dunsink Observatory in Dublin Broom Bridge. Would be funny if they
walked in a Hamiltonian path, eh.
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Hamilton
Question: What would someone, living in 19th century Ireland, do when
they were bored?

Ans: Math.1 More specifically, think about whether they can “walk”
across a dodecahedron in a loop, visiting every vertex once.

Let’s try it! Here’s the dodecahedron projected to 2D space.
Task: Can you find a cycle in the graph below that visits every vertex
exactly once?

1Not sure about other 19th century Irishpeople, but Hamilton certainly did. 7 / 16
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Hamilton
Task: Can you find a cycle in the graph below that visits every vertex
exactly once?

Ans: Yes!

This kinda reminds me of “connect the dots” games I used to play as a kid
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Hamiltonian Cycle Problem

The previous “connect the dots in a loop” game is a specific instance of
the Hamiltonian Cycle Problem.

In the Hamiltonian Cycle Problem, you are given a graph (undirected in
our context), and asked to determine whether a Hamiltonian Cycle exists.

Definition: Given a graph G = (V ,E ), a Hamiltonian Cycle is a cycle
that contains each vertex v ∈ V exactly once.

Task: Determine whether Hamiltonian cycles exist in the following graphs.
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Hamiltonian Cycle Problem

Ans: The left and right graphs have Hamiltonian cycles, while the middle
graph doesn’t.

Question: How do we know that there is no Hamiltonian cycle for the
middle graph?

Ans: brute force.
Insight: This gives us another “hard to solve, easy to verify” problem.
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Hamiltonian Cycle Problem

Task: Describe, in pseudocode, how you can “brute-force” the
Hamiltonian cycle problem. What is the runtime?

Ans:

def has_hcycle(V, E):

suppose V = {v1, v2, ..., vn}

for every permutation {vi1, vi2, ..., vin}

of {v1, v2, ..., vn}:

if vi1->vi2->...->vin->vi1 is a valid path in the graph:

return True

return False

The runtime is... O(n!m) (since there are n! many permutations of n
vertices, and checking each permutation takes O(m)).
Question: Can we do better?
Ans: we don’t know... (this is akin to solving the P vs NP problem)2

2The Hamiltonian Cycle problem is NP-complete.
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Hamiltonian Cycle Problem

The runtime is... O(n!m) (since there are n! many permutations of n
vertices, and checking each permutation takes O(m)).

source
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https://www.reddit.com/r/ProgrammerHumor/comments/n8bgw1/boss_makes_a_dollar_i_make_a_dime/


Hamiltonian Cycle Problem

There’s a similar problem, called the Hamiltonian Path Problem, which
involves visiting every vertex exactly once in a path (without having to
loop back to the beginning).

The middle graph has a solution to the Hamiltonian Path Problem.
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NTM solution to Hamiltonian Cycle Problem

Task: Build a poly-time NTM that decides the language

HC = {G : There is a Hamiltonian Cycle in G}.

You should define in_HC(V, E) (where (V ,E ) is the graph).

Ans:

in_HC(V, E):

choose a permutation (v1, ..., vn) of V # nondeterministic!

for i in 1, ..., n-1:

if (vi, v(i+1)) not in E:

reject

if (vn, v1) not in E:

reject

accept
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NTM solution to Hamiltonian Cycle Problem
Task: Build a poly-time TM verify_HC(V, E, s) such that

(V ,E ) ∈ HC ⇔There is some input s such that

verify HC(V, E, s) accepts.

Ans:
verify_HC(V, E, s: string):

let V = (v1, ..., vn)

if s is not of the form "(v{k1}, ..., v{kn}})":

reject

parse s to extract vertices vk1, ..., vkn

for i in range(n-1):

if (vki, vk(i+1)) not in E:

reject

if (vkn, vk1) not in E:

reject

accept

verify_HC(V, E, s) acts as a verifier : it checks whether a prospective
“solution” s to the Hamiltonian Cycle problem actually works.
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NTM poly-time versus verifiable in poly-time

There is a more general definition of a verifier.

Definition: A verifier V for a language L is a Turing machine that satisfies

x ∈ L ⇔ (∃s)V(x, s) accepts.

A string s is called a certificate if V (x , s) accepts.
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