CSC363 Tutorial #9 SAT is NP-complete!

March 23, 2022

Learning objectives this tutorial

- Review the SAT problem.
- Review NP-completeness.
- Prove that SAT is NP-complete!

Task: Recall what " $S \subseteq \Sigma^*$ is NP-complete" means. (There are two conditions!)

Task: Recall what " $S \subseteq \Sigma^*$ is NP-complete" means. (There are two conditions!)

Ans: A set S is NP-complete iff both of the following hold:

► $S \in NP$;

For every
$$A \in NP$$
, $A \leq_P S$.

These two conditions, combined together, say that S is the "hardest" problem in NP.

Task: Name some languages/decision problems that are NP-complete.

Task: Name some languages/decision problems that are NP-complete. **Ans:** (I might be missing some here)

► SAT.

- ► SAT.
- ► 3SAT.

- ► SAT.
- ► 3SAT.
- Subset Sum.

- ► SAT.
- ► 3SAT.
- Subset Sum.
- ► Hamiltonian Path/Cycle Problem.

- ► SAT.
- ► 3SAT.
- Subset Sum.
- ► Hamiltonian Path/Cycle Problem.
- Knapsack Problem.

- ► SAT.
- ► 3SAT.
- Subset Sum.
- ► Hamiltonian Path/Cycle Problem.
- Knapsack Problem.
- Many more (click me!), including things like (generalized) Sudoku, optimal solutions for Rubik's cube, Battleship, among others...

Question: What's a boolean formula?

Question: What's a *boolean formula*? **Ans:** A *boolean formula* is a well-formed logical expression consisting of symbols from

$$\{(,), \neg, \lor, \land,
ightarrow, \leftrightarrow\}$$

and one or more "variables". A boolean formula's truth value can be evaluated once all variables are assigned to T or F.

Question: What's a *boolean formula*? **Ans:** A *boolean formula* is a well-formed logical expression consisting of symbols from

$$\{(,), \neg, \lor, \land, \rightarrow, \leftrightarrow\}$$

and one or more "variables". A boolean formula's truth value can be evaluated once all variables are assigned to T or F.

The following are boolean formulas:

- ▶ $(x_1 \lor x_2) \rightarrow x_3$ (with x_1, x_2, x_3 being the variables).
- $(x \land \neg y) \land x$ (with x, y, z being the variables).
- $x \wedge x \wedge x \wedge \neg x$ (with x being the only variable).

Question: What's a *boolean formula*? **Ans:** A *boolean formula* is a well-formed logical expression consisting of symbols from

$$\{(,), \neg, \lor, \land, \rightarrow, \leftrightarrow\}$$

and one or more "variables". A boolean formula's truth value can be evaluated once all variables are assigned to T or F.

The following are boolean formulas:

- ▶ $(x_1 \lor x_2) \rightarrow x_3$ (with x_1, x_2, x_3 being the variables).
- $(x \land \neg y) \land x$ (with x, y, z being the variables).
- $x \wedge x \wedge x \wedge \neg x$ (with x being the only variable).

The following are not boolean formulas:

► $x_1 x_2^2 = x_3$.

► ()()()
$$x_1 \rightarrow \neg$$

Task: Evaluate the boolean formula

$$(x_1 \lor x_2 \lor x_3)
ightarrow ((x_2 \land x_3)
ightarrow \neg x_1)$$

with the assignments $x_1 = T, x_2 = F, x_3 = F$

Task: Evaluate the boolean formula

$$(x_1 \lor x_2 \lor x_3)
ightarrow ((x_2 \land x_3)
ightarrow \neg x_1)$$

with the assignments $x_1 = T, x_2 = F, x_3 = F$

Ans: We convert the boolean formula to

$$(T \lor F \lor F) \to ((F \land F) \to \neg T), \bigcirc$$

and observe that $(T \lor F \lor F)$ is true, which reduces the formula to

$$T \to ((F \land F) \to \neg T),$$

or further (since $T \rightarrow$ something has the same truth value as something),

$$(F \wedge F) \rightarrow \neg T.$$

Continuing, $(F \land F)$ is false, so we reduce to

 $F \rightarrow \neg T$

 $(F \wedge F) \rightarrow \neg T.$

and since $F \rightarrow$ something is always true, we reduce to

Τ.

Thus, we conclude that

$$(x_1 \lor x_2 \lor x_3)
ightarrow ((x_2 \land x_3)
ightarrow \neg x_1)$$

with the assignments $x_1 = T, x_2 = F, x_3 = F$ evaluates to true.

Task: Come up with a boolean formula such that *no assignment of its variables* makes the formula evaluate to true.

Task: Come up with a boolean formula such that *no assignment of its variables* makes the formula evaluate to true. **Ans:** Something like

 $x \wedge \neg x$

should work.

Task: Come up with a boolean formula such that *no assignment of its variables* makes the formula evaluate to true. **Ans:** Something like

$$x \land \neg x$$

should work.

Definition: A boolean formula ϕ is **satisfiable** if *some* assignment of its variables makes ϕ evaluate to true. We let SAT be the set of all satisfiable boolean formulas:

 $SAT = \{\phi : \phi \text{ is a satisfiable boolean formula.}\}$

 $(x_1) (x_2) (x_3) (x_4) (x_4$

Task: Determine which of the following formulas are satisfiable.

$$\begin{array}{c} (\vee x_{2}) \rightarrow x_{3}. \\ (\wedge \neg y) \wedge x. \\ (\times \wedge x \wedge \neg x. \\ \end{array}$$

$$\begin{array}{c} (T_{0,0,0} \wedge T_{1,0,0}) \\ (\wedge (Q_{0,0}) \wedge (H_{0,0}) \\ (\neg (T_{0,0,0}) \vee \neg (T_{0,1,0})) \wedge (\neg (T_{1,0,0}) \vee \neg (T_{1,1,0})) \\ ((\neg (T_{0,0,1}) \vee \neg (T_{0,1,1})) \wedge (\neg (T_{1,0,1}) \vee \neg (T_{1,1,1})) \\ ((\neg (T_{0,0,0} \wedge T_{0,1,1} \rightarrow H_{0,0}) \wedge ((T_{0,1,0} \wedge T_{0,0,1} \rightarrow H_{0,0}) \\ ((\neg Q_{0,0} \vee \neg Q_{1,0}) \wedge (\neg Q_{0,1} \vee \neg Q_{1,1}) \\ ((\neg H_{0,0} \wedge Q_{0,0} \wedge T_{0,0,0}) \rightarrow (H_{1,1} \wedge Q_{1,1} \wedge T_{0,1,1})) \\ (\wedge Q_{1,0} \vee Q_{1,1} \end{array}$$

Task: Determine which of the following formulas are satisfiable.

- $\blacktriangleright (x_1 \lor x_2) \to x_3.$
- $\blacktriangleright (x \land \neg y) \land x.$
- $\blacktriangleright x \land x \land x \land \neg x.$

Ans:

- ▶ $(T \lor T) \to T$ is true, so $(x_1 \lor x_2) \to x_3$ is satisfiable.
- $(T \land \neg F) \land T$ is true, so $(x \land \neg y) \land x$ is satisfiable.
- $x \wedge x \wedge x \wedge \neg x$ is not satisfiable.

Task: Determine which of the following formulas are satisfiable.

- $\blacktriangleright (x_1 \lor x_2) \to x_3.$
- $\blacktriangleright (x \land \neg y) \land x.$
- $\blacktriangleright x \land x \land x \land \neg x.$

Ans:

- $(T \lor T) \to T$ is true, so $(x_1 \lor x_2) \to x_3$ is satisfiable.
- $(T \land \neg F) \land T$ is true, so $(x \land \neg y) \land x$ is satisfiable.
- $x \wedge x \wedge x \wedge \neg x$ is not satisfiable.

Question: How do we know that a boolean formula is not satisfiable?

Task: Determine which of the following formulas are satisfiable.

- $\blacktriangleright (x_1 \lor x_2) \to x_3.$
- $\blacktriangleright (x \land \neg y) \land x.$
- $\blacktriangleright x \land x \land x \land \neg x.$

Ans:

- $(T \lor T) \to T$ is true, so $(x_1 \lor x_2) \to x_3$ is satisfiable.
- $(T \land \neg F) \land T$ is true, so $(x \land \neg y) \land x$ is satisfiable.
- $x \wedge x \wedge x \wedge \neg x$ is not satisfiable.

Question: How do we know that a boolean formula is not satisfiable? **Ans:** Check through all combinations of variable assignments.

Task: Determine which of the following formulas are satisfiable.

- $\blacktriangleright (x_1 \lor x_2) \to x_3.$
- $\blacktriangleright (x \land \neg y) \land x.$
- $\blacktriangleright x \land x \land x \land \neg x.$

Ans:

- $(T \lor T) \to T$ is true, so $(x_1 \lor x_2) \to x_3$ is satisfiable.
- $(T \land \neg F) \land T$ is true, so $(x \land \neg y) \land x$ is satisfiable.
- $x \wedge x \wedge x \wedge \neg x$ is not satisfiable.

Question: How do we know that a boolean formula is not satisfiable? **Ans:** Check through all combinations of variable assignments...

Question: How long does it take to check through all combinations?

Task: Determine which of the following formulas are satisfiable.

- $\blacktriangleright (x_1 \lor x_2) \to x_3.$
- $\blacktriangleright (x \land \neg y) \land x.$
- $\blacktriangleright x \land x \land x \land \neg x.$

Ans:

- $(T \lor T) \to T$ is true, so $(x_1 \lor x_2) \to x_3$ is satisfiable.
- $(T \land \neg F) \land T$ is true, so $(x \land \neg y) \land x$ is satisfiable.
- $x \wedge x \wedge x \wedge \neg x$ is not satisfiable.

Question: How do we know that a boolean formula is not satisfiable? **Ans:** Check through all combinations of variable assignments...

Question: How long does it take to check through all combinations? **Ans:** $O(2^n)...$

SAT is another easy-to-verify, hard-to-solve (unproven) problem.

But... we can prove that SAT is NP-complete...

But... we can prove that SAT is NP-complete... **Theorem (Cook-Levin):** SAT is NP-complete.

But... we can prove that SAT is NP-complete...

Theorem (Cook-Levin): SAT is NP-complete.

Proof:

- ▷ SAT \in NP, since we can verify a solution (in our case, an assignment of variables resulting in true) in poly-time (via "formula reduction", as we have done earlier).
- ▶ For any $A \in NP$, $A \leq SAT$, since... (hard part!)

(Proof taken from Wikipedia) Let $A \in NP$. By definition, there is a NTM

 $M = (Q, \Sigma, \overline{\Gamma}, \delta, q_0, q_{\mathsf{accept}}, q_{\mathsf{reject}})$

that decides A in p(n) steps or less (where p(n) is some polynomial).

(Proof taken from Wikipedia) Let $A \in NP$. By definition, there is a NTM

 $M = (Q, \Sigma, \overline{\Gamma}, \delta, q_0, q_{\mathsf{accept}}, q_{\mathsf{reject}})$

that decides A in p(n) steps or less (where p(n) is some polynomial). **Question:** Suppose M(x) halts in p(n) steps where n = |x|. At most, how many *cells* are accessed during execution?

(Proof taken from Wikipedia) Let $A \in NP$. By definition, there is a NTM

 $M = (Q, \Sigma, \overline{\Gamma}, \delta, q_0, q_{\mathsf{accept}}, q_{\mathsf{reject}})$

that decides A in p(n) steps or less (where p(n) is some polynomial).

Question: Suppose M(x) halts in p(n) steps where n = |x|. At most, how many *cells* are accessed during execution? **Ans:** At most p(n) cells: if our read/write head starts at cell 0, then we could only access cell numbers -p(n) through p(n).

We will construct a formula ϕ in polynomial-time (w.r.t *n*) such that

M(A) accepts $\Leftrightarrow \phi \in SAT$.

We will construct a formula ϕ in polynomial-time (w.r.t *n*) such that

M(A) accepts $\Leftrightarrow \phi \in SAT$.

We will construct a formula ϕ in polynomial-time (w.r.t n) such that

M(A) accepts $\Leftrightarrow \phi \in SAT$.

This formula ϕ will have the following variables:

► $T_{i,j,k}$ for $-p(n) \le i \le p(n)$, $j \in \Gamma$, $0 \le k \le p(n)$.

We will construct a formula ϕ in polynomial-time (w.r.t n) such that

M(A) accepts $\Leftrightarrow \phi \in SAT$.

This formula ϕ will have the following variables:

► $T_{i,j,k}$ for $-p(n) \le i \le p(n)$, $j \in \Gamma$, $0 \le k \le p(n)$. "Interpretation": $T_{i,j,k}$ true iff at step k, j is written on cell i.

We will construct a formula ϕ in polynomial-time (w.r.t *n*) such that

M(A) accepts $\Leftrightarrow \phi \in SAT$.

This formula ϕ will have the following variables:

► $T_{i,j,k}$ for $-p(n) \le i \le p(n)$, $j \in \Gamma$, $0 \le k \le p(n)$. "Interpretation": $T_{i,j,k}$ true iff at step k, j is written on cell i.

$$\blacktriangleright \quad Q_{q,k} \text{ for } q \in Q, \ 0 \leq k \leq p(n).$$

We will construct a formula ϕ in polynomial-time (w.r.t n) such that

M(A) accepts $\Leftrightarrow \phi \in SAT$.

- ► $T_{i,j,k}$ for $-p(n) \le i \le p(n)$, $j \in \Gamma$, $0 \le k \le p(n)$. "Interpretation": $T_{i,j,k}$ true iff at step k, j is written on cell i.
- ▶ $Q_{q,k}$ for $q \in Q$, $0 \le k \le p(n)$. "Interpretation": $Q_{q,k}$ true iff at step k, NTM is in state q.

We will construct a formula ϕ in polynomial-time (w.r.t *n*) such that

M(A) accepts $\Leftrightarrow \phi \in SAT$.

- ► $T_{i,j,k}$ for $-p(n) \le i \le p(n)$, $j \in \Gamma$, $0 \le k \le p(n)$. "Interpretation": $T_{i,j,k}$ true iff at step k, j is written on cell i.
- ▶ $Q_{q,k}$ for $q \in Q$, $0 \le k \le p(n)$. "Interpretation": $Q_{q,k}$ true iff at step k, NTM is in state q.
- $\blacktriangleright H_{i,k} \text{ for } -p(n) \leq i \leq p(n), \ 0 \leq k \leq p(n).$

We will construct a formula ϕ in polynomial-time (w.r.t *n*) such that

M(A) accepts $\Leftrightarrow \phi \in SAT$.

- ► $T_{i,j,k}$ for $-p(n) \le i \le p(n)$, $j \in \Gamma$, $0 \le k \le p(n)$. "Interpretation": $T_{i,j,k}$ true iff at step k, j is written on cell i.
- ▶ $Q_{q,k}$ for $q \in Q$, $0 \le k \le p(n)$. "Interpretation": $Q_{q,k}$ true iff at step k, NTM is in state q.
- ► $H_{i,k}$ for $-p(n) \le i \le p(n)$, $0 \le k \le p(n)$. "Interpretation": $H_{i,k}$ true iff at step k, head points to cell i.

We will construct a formula ϕ in polynomial-time (w.r.t *n*) such that

M(A) accepts $\Leftrightarrow \phi \in SAT$.

This formula ϕ will have the following variables:

- ► $T_{i,j,k}$ for $-p(n) \le i \le p(n)$, $j \in \Gamma$, $0 \le k \le p(n)$. "Interpretation": $T_{i,j,k}$ true iff at step k, j is written on cell i.
- ▶ $Q_{q,k}$ for $q \in Q$, $0 \le k \le p(n)$. "Interpretation": $Q_{q,k}$ true iff at step k, NTM is in state q.
- ► $H_{i,k}$ for $-p(n) \le i \le p(n)$, $0 \le k \le p(n)$. "Interpretation": $H_{i,k}$ true iff at step k, head points to cell i.

Question: How many $T_{i,j,k}$ variables are there? What about $Q_{q,k}$ and $H_{i,k}$?

We will construct a formula ϕ in polynomial-time (w.r.t n) such that

M(A) accepts $\Leftrightarrow \phi \in SAT$.

This formula ϕ will have the following variables:

- ► $T_{i,j,k}$ for $-p(n) \le i \le p(n)$, $j \in \Gamma$, $0 \le k \le p(n)$. "Interpretation": $T_{i,j,k}$ true iff at step k, j is written on cell i.
- ▶ $Q_{q,k}$ for $q \in Q$, $0 \le k \le p(n)$. "Interpretation": $Q_{q,k}$ true iff at step k, NTM is in state q.
- ► $H_{i,k}$ for $-p(n) \le i \le p(n)$, $0 \le k \le p(n)$. "Interpretation": $H_{i,k}$ true iff at step k, head points to cell i.

Question: How many $T_{i,j,k}$ variables are there? What about $Q_{q,k}$ and $H_{i,k}$? **Ans:** There are $O((p(n))^2)$ $T_{i,j,k}$'s, O(p(n)) $Q_{q,k}$'s, and $O((p(n))^2)$ $H_{i,k}$'s.

We will construct a formula ϕ in polynomial-time (w.r.t *n*) such that

M(A) accepts $\Leftrightarrow \phi \in SAT$.

This formula ϕ will have the following variables:

- ► $T_{i,j,k}$ for $-p(n) \le i \le p(n)$, $j \in \Gamma$, $0 \le k \le p(n)$. "Interpretation": $T_{i,j,k}$ true iff at step k, j is written on cell i.
- ▶ $Q_{q,k}$ for $q \in Q$, $0 \le k \le p(n)$. "Interpretation": $Q_{q,k}$ true iff at step k, NTM is in state q.
- ► $H_{i,k}$ for $-p(n) \le i \le p(n)$, $0 \le k \le p(n)$. "Interpretation": $H_{i,k}$ true iff at step k, head points to cell i.

Question: How many $T_{i,j,k}$ variables are there? What about $Q_{q,k}$ and $H_{i,k}$?

Ans: There are $O((p(n))^2)$ $T_{i,j,k}$'s, O(p(n)) $Q_{q,k}$'s, and $O((p(n))^2)$ $H_{i,k}$'s. Either way, there are a polynomial number of variables w.r.t *n*.

► $T_{i,j,k}$ for $-p(n) \le i \le p(n)$, $j \in \Gamma$, $0 \le k \le p(n)$.

► $T_{i,j,k}$ for $-p(n) \le i \le p(n)$, $j \in \Gamma$, $0 \le k \le p(n)$. "Interpretation": $T_{i,j,k}$ true iff at step k, j is written on cell i.

- ► $T_{i,j,k}$ for $-p(n) \le i \le p(n)$, $j \in \Gamma$, $0 \le k \le p(n)$. "Interpretation": $T_{i,j,k}$ true iff at step k, j is written on cell i.
- ▶ $Q_{q,k}$ for $q \in Q$, $0 \le k \le p(n)$.

- ► $T_{i,j,k}$ for $-p(n) \le i \le p(n)$, $j \in \Gamma$, $0 \le k \le p(n)$. "Interpretation": $T_{i,j,k}$ true iff at step k, j is written on cell i.
- ▶ $Q_{q,k}$ for $q \in Q$, $0 \le k \le p(n)$. "Interpretation": $Q_{q,k}$ true iff at step k, NTM is in state q.

- ► $T_{i,j,k}$ for $-p(n) \le i \le p(n)$, $j \in \Gamma$, $0 \le k \le p(n)$. "Interpretation": $T_{i,j,k}$ true iff at step k, j is written on cell i.
- ▶ $Q_{q,k}$ for $q \in Q$, $0 \le k \le p(n)$. "Interpretation": $Q_{q,k}$ true iff at step k, NTM is in state q.
- $\blacktriangleright H_{i,k} \text{ for } -p(n) \leq i \leq p(n), \ 0 \leq k \leq p(n).$

- ► $T_{i,j,k}$ for $-p(n) \le i \le p(n)$, $j \in \Gamma$, $0 \le k \le p(n)$. "Interpretation": $T_{i,j,k}$ true iff at step k, j is written on cell i.
- ▶ $Q_{q,k}$ for $q \in Q$, $0 \le k \le p(n)$. "Interpretation": $Q_{q,k}$ true iff at step k, NTM is in state q.
- ► $H_{i,k}$ for $-p(n) \le i \le p(n)$, $0 \le k \le p(n)$. "Interpretation": $H_{i,k}$ true iff at step k, head points to cell i.

► $T_{i,j,k}$ for $-p(n) \le i \le p(n)$, $j \in \Gamma$, $0 \le k \le p(n)$. "Interpretation": $T_{i,j,k}$ true iff at step k, j is written on cell i.

▶
$$Q_{q,k}$$
 for $q \in Q$, $0 \le k \le p(n)$.
"Interpretation": $Q_{q,k}$ true iff at step k, NTM is in state q.

►
$$H_{i,k}$$
 for $-p(n) \le i \le p(n)$, $0 \le k \le p(n)$.
"Interpretation": $H_{i,k}$ true iff at step k, head points to cell i.

Task: Suppose M were the following machine over the input alphabet $\{0, 1\}$:

$$\begin{array}{c|c} (0, q_0) & (1, q_0, R) \\ \hline (1, q_0) & (1, q_0, R) \\ \hline (\Box, q_0) & (1, q_{halt}, R) \end{array}$$

▶ Can you find a p(n) such that $M \in \text{TIME}(p(n))$?

- ► $T_{i,j,k}$ for $-p(n) \le i \le p(n)$, $j \in \Gamma$, $0 \le k \le p(n)$. "Interpretation": $T_{i,j,k}$ true iff at step k, j is written on cell i.
- ▶ $Q_{q,k}$ for $q \in Q$, $0 \le k \le p(n)$. "Interpretation": $Q_{q,k}$ true iff at step k, NTM is in state q.
- ► $H_{i,k}$ for $-p(n) \le i \le p(n)$, $0 \le k \le p(n)$. "Interpretation": $H_{i,k}$ true iff at step k, head points to cell i.

Task: Suppose M were the following machine over the input alphabet $\{0, 1\}$:

$$\begin{array}{c|c} (0, q_0) & (1, q_0, R) \\ \hline (1, q_0) & (1, q_0, R) \\ \hline (\Box, q_0) & (1, q_{halt}, R) \end{array}$$

- Can you find a p(n) such that $M \in \text{TIME}(p(n))$?
- ▶ Using the p(n) you've found above, calculate p(0), and list out all the $T_{i,j,k}$'s, all the $Q_{q,k}$'s, and all the $H_{i,k}$'s for n = 0.

Ans: Our NTM, on an input of size *n*, halts in n + 1 steps or less. Thus if p(n) = n + 1, $M \in \text{TIME}(p(n))$.

For n = 0, we have p(n) = 1, so our list of variables would be:

$$\begin{array}{l} \blacktriangleright \quad T_{i,j,k} \text{ for } -1 \leq i \leq 1, \, j \in \{0,1,\Box\}, \, 0 \leq k \leq 1; \\ T_{-1,0,0}, \ T_{-1,1,0}, \ T_{-1,\Box,0}, \ T_{0,0,0}, \ T_{0,1,0}, \ T_{0,\Box,0}, \ T_{1,0,0}, \ T_{1,1,0}, \ T_{1,\Box,0}, \\ T_{-1,0,1}, \ T_{-1,1,1}, \ T_{-1,\Box,1}, \ T_{0,0,1}, \ T_{0,1,1}, \ T_{0,\Box,1}, \ T_{1,0,1}, \ T_{1,1,1}, \ T_{1,\Box,1} \end{array}$$

$$\begin{array}{l} \blacktriangleright \quad Q_{q,k} \text{ for } q \in \{q_0,q_{\mathsf{halt}}\}, \ 0 \leq k \leq 1; \\ Q_{q_0,0}, \ Q_{q_{\mathsf{halt}},0}, \ Q_{q_0,1}, \ Q_{q_{\mathsf{halt}},1} \end{array}$$

$$H_{i,k} \text{ for } -1 \leq i \leq 1, \ 0 \leq k \leq 1: \\ H_{-1,0}, \ H_{0,0}, \ H_{1,0}, \ H_{-1,1}, \ H_{0,1}, \ H_{1,1}.$$

- ► $T_{i,j,k}$ for $-1 \le i \le 1$, $j \in \{0, 1, \square\}$, $0 \le k \le 1$: $T_{-1,0,0}$, $T_{-1,1,0}$, $T_{-1,\square,0}$ $T_{0,0,0}$, $T_{0,1,0}$, $T_{0,\square,0}$, $T_{1,0,0}$, $T_{1,1,0}$, $T_{1,\square,0}$, $T_{-1,0,1}$, $T_{-1,1,1}$, $T_{-1,\square,1}$, $T_{0,0,1}$, $T_{0,1,1}$, $T_{0,\square,1}$, $T_{1,0,1}$, $T_{1,1,1}$, $T_{1,\square,1}$ **Interpretation:** $T_{i,i,k}$ true iff at step k, j is written on cell i.
- $\begin{array}{l} \blacktriangleright \quad Q_{q,k} \text{ for } q \in \{q_0, q_{\mathsf{halt}}\}, \ 0 \leq k \leq 1: \\ Q_{q_0,0}, \ Q_{q_{\mathsf{halt}},0}, \ Q_{q_0,1}, \ Q_{q_{\mathsf{halt}},1} \\ \textbf{Interpretation: } Q_{q,k} \text{ true iff at step } k, \ \mathsf{NTM} \text{ is in state } q. \end{array}$
- ► $H_{i,k}$ for $-1 \le i \le 1$, $0 \le k \le 1$: $H_{-1,0}$, $H_{0,0}$, $H_{1,0}$, $H_{-1,1}$, $H_{0,1}$, $H_{1,1}$. **Interpretation**: $H_{i,k}$ true iff at step k, head points to cell i.

- ► $T_{i,j,k}$ for $-1 \le i \le 1$, $j \in \{0, 1, \square\}$, $0 \le k \le 1$: $T_{-1,0,0}$, $T_{-1,1,0}$, $T_{-1,\square,0}$ $T_{0,0,0}$, $T_{0,1,0}$, $T_{0,\square,0}$, $T_{1,0,0}$, $T_{1,1,0}$, $T_{1,\square,0}$, $T_{-1,0,1}$, $T_{-1,1,1}$, $T_{-1,\square,1}$, $T_{0,0,1}$, $T_{0,1,1}$, $T_{0,\square,1}$, $T_{1,0,1}$, $T_{1,1,1}$, $T_{1,\square,1}$ **Interpretation:** $T_{i,i,k}$ true iff at step k, j is written on cell i.
- $\begin{array}{l} \blacktriangleright \quad Q_{q,k} \text{ for } q \in \{q_0, q_{\mathsf{halt}}\}, \ 0 \leq k \leq 1: \\ Q_{q_0,0}, \ Q_{q_{\mathsf{halt}},0}, \ Q_{q_0,1}, \ Q_{q_{\mathsf{halt}},1} \\ \textbf{Interpretation: } Q_{q,k} \text{ true iff at step } k, \ \mathsf{NTM} \text{ is in state } q. \end{array}$

►
$$H_{i,k}$$
 for $-1 \le i \le 1$, $0 \le k \le 1$:
 $H_{-1,0}$, $H_{0,0}$, $H_{1,0}$, $H_{-1,1}$, $H_{0,1}$, $H_{1,1}$.
Interpretation: $H_{i,k}$ true iff at step k , head points to cell i .

Task: Trace M on an empty input (n = 0). For each step, note the following:

- What is written on cells -1, 0, 1?
- Which state is the TM in?
- Where is the head pointing?

For each variable listed above, determine its interpretation.

Task: Trace *M* on an empty input (n = 0). For each step, note the following:

- What is written on cells -1, 0, 1?
- Which state is the TM in?
- ▶ Where is the head pointing?

For each variable listed above, determine its interpretation. **Ans:** At step k = 0:

- ▶ Cells -1, 0, 1 are all \Box : $T_{-1,\Box,0}$, $T_{0,\Box,0}$, $T_{1,\Box,0}$ are all true.
- ▶ We are in state q_0 : $Q_{q_0,0}$ is true.
- The head is pointing to cell 0: $H_{0,0}$ is true.

Task: Trace M on an empty input (n = 0). For each step, note the following:

- What is written on cells -1, 0, 1?
- Which state is the TM in?
- ▶ Where is the head pointing?

For each variable listed above, determine its interpretation. **Ans:** At step k = 0:

- ▶ Cells -1, 0, 1 are all \Box : $T_{-1,\Box,0}$, $T_{0,\Box,0}$, $T_{1,\Box,0}$ are all true.
- ▶ We are in state q_0 : $Q_{q_0,0}$ is true.
- The head is pointing to cell 0: $H_{0,0}$ is true.

At step k = 1:

- ▶ Cells -1, 1 are \Box , while cell 0 is 1: $T_{-1,\Box,1}$, $T_{0,1,1}$, $T_{1,\Box,1}$
- We are in state q_{halt} : $Q_{q_{halt},1}$.
- ▶ The head is pointing to cell 1: $H_{1,1}$.

Any variable not listed here is interpreted as false.

Now, back to describing ϕ :

Define the Boolean expression $\frac{1}{2}$ to be the conjunction of the sub-expressions in the following table, for all $-p(n) \le i \le p(n)$ and $0 \le k \le p(n)$:

Expression	Conditions	Interpretation	How many?
$T_{i,j,0}$	Tape cell i initially contains symbol j	Initial contents of the tape. For $i > n-1$ and $i < 0$, outside of the actual input I , the initial symbol is the special default/blank symbol.	O(p(n))
$Q_{s,0}$		Initial state of M.	1
$H_{0,0}$		Initial position of read/write head.	1
$\neg T_{i,j,k} \lor \neg T_{i,j',k}$	<i>j≠j</i> ′	At most one symbol per tape cell.	$O(p(n)^2)$
$\bigvee_{j \in \Sigma} T_{i,j,k}$		At least one symbol per tape cell.	$O(p(n)^2)$
$T_{i,j,k} \wedge T_{i,j',k+1} \to H_{i,k}$	j≠j	Tape remains unchanged unless written.	$O(p(n)^2)$
$\neg Q_{q,k} \lor \neg Q_{q',k}$	$q \neq q'$	Only one state at a time.	O(p(n))
$\neg H_{l,k} \lor \neg H_{l,k}$	1 ≠ 1	Only one head position at a time.	$O(p(n)^3)$
$ \begin{array}{l} (H_{i,k} \wedge Q_{q,k} \wedge T_{i,\sigma,k}) \rightarrow \\ \bigvee_{((q,\sigma),(q',\sigma',d)) \in \delta} (H_{i+d,\ k+1} \wedge Q_{q',\ k+1} \wedge T_{i,\ \sigma',\ k+1}) \end{array} $	k <p(n)< td=""><td>Possible transitions at computation step k when head is at position i.</td><td>$O(p(n)^2)$</td></p(n)<>	Possible transitions at computation step k when head is at position i.	$O(p(n)^2)$
$\bigvee_{0 \le k \le p(n)} Q_{f,k}$		Must finish in an accepting state, not later than in step $p(n)$.	1

TL;DR: by choosing an assignment for this statement, we are specifying an *execution path* that the NTM *M* takes on an input, and vice versa.

