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it's the last tutorial! :D

topics:
- equivalence relations
- equivalence classes
- modular arithmetic (hidden in the problems)

Definition 7.2.1. An equivalence relation i on a set § is a relation (that is. B € 8 x 5), such that:
(a) Forany r £ S, (r,r) € R (reflexive property).
(b) Forany =,y € S, if (x.y) € R, then (y,r) € B (symmetric property).

(c) Forany x,y.z € S, if (x.y) € R and (y, z) € R, then (. z) € R (transitive property).

1) (a) Prove directly, that the following relation, on the set of integers, is an equivalence
relation.

a = b il and only if @ — b is divisible by 4.
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(b) Show that if two integers satisfy the relation in part (a), then they have the same
remainder when divided by 4 (refer to Theorem 6.1.2 and Exercise 6.4.7). a = b if and only if @ — b is divisible by 4.

Theorem 6.1.2. [The Division Algorithn)

If a.b e M, then there is a unique pair of integers, q and v, with q = 0 and 0 < r < b, such that
S“ﬁ"” bel -

a=qg-b+r

(i is called the quotient, and r the v inder).

6.4.7. There are ways to generalize the Division Algorithm (Theorem 6.1.2), so that it can be applied to
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all integers (both positive and negative). Here is one possible generalization. -“LQVQ_ ‘?\q‘sﬁ Ul\‘lfl/['@/ {n-\'q:]&ys ﬁﬁ Va
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If a, b € T, with b # 0, then there is a unique pair of integers, q and r,

with 0 < r < |b|, such that a = g - b+ r. QA‘\é\ p\'[: Yb BU(}\ H’W’S‘
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Note that the remainder is still required to be nonnegative, so for instance, if we divide —21 by —4,

the quotient is 6 and the remainder is 3, as =21 =6 (—4) + 3. a = OLG» - l—t -t t,

(a) Find the quotient and the remainder, obtained when dividing a by b,
(you don't have to actually do 6.4.7 as an exercise) \0 o . q “'
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e a=27and b= -8 e a=5and b= -7. b
e a=—15and h=2 ea=—4andb=9
e a=—36and b= -0, %\'\Ow Yo < [

(b} Prove the generalized version of the Division Algorithm given above.

(Hint: Instead of nsing imdnetion neoceed by cases and refer tn Theorem 619 ) H oA -—(A
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e a=—36 and b= -9,

(b} Prove the generalized version of the Division Algorithm given above,

(Hint: Instead of using induction, proceed by cases, and refer to Theorem 6.1.2.)

2} Define, on the set of integers, the following equivalence relation,
ko~ 1 if and only if |k| = |I].

(a) Prove that the above relation is indeed an equivalence relation.
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(b} Describe the equivalence classes for this relation.

Definition 7.3.1. Let / be an equivalence relation on a set S, and r € 8.

The equivalence class of r is the set of all elements y £ S, which are equivalent to r:
{ve S:(xy) e R}

We denote the equivalence class of = by [r].
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3) Let f: A — B be an arbitrary function. Prove that the relation

x~y if and only if f(x) = f(y).

on the set A, is an equivalence relation.
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