w11

09 August 2021 14:42

it's the last tutorial! :D

- topics:
- equivalence relations
 equivalence classes
- modular arithmetic (hidden in the problems)

Definition 7.2.1. An equivalence relation R on a set S is a relation (that is, R ⊆ S × S), such that:
(a) For any x ∈ S, (x, x) ∈ R (reflexive property).
(b) For any x, y ∈ S, if (x, y) ∈ R, then (y, x) ∈ R (symmetric property).
(c) For any x, y, z ∈ S, if (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R (transitive property).

1) (a) Prove directly, that the following relation, on the set of integers, is an equivalence relation.

 $a \equiv b$ if and only if a - b is divisible by 4.

Referrine: is
$$a \equiv a$$
 for \mathbb{Z}^{2} .
yes! $a = a = 0$ which is divisible by 4.
Symmetric: does $a \equiv b \implies b \equiv a^{2}$
yes! if $a \equiv b$, then $a = b = 4k$ for some $k \in \mathbb{Z}$.
 $b = a = 4(-k)$.
so $b = a$ is divisible by 4,
So $b \equiv a$.
Thonsistive: does $a \equiv b$, $b \equiv c \implies a \equiv c^{2}$.
yes! if $a \equiv b$, $b \equiv c \implies a \equiv c^{2}$.
 $yes!$ if $a \equiv b$, $b \equiv c$
 $a = b \equiv 4k$ $b = c \equiv 4k$ for some $k, k \in \mathbb{Z}$.
 $o = c = (a = 0 = kk + 4k - 4 + kkk)$
 $so a = c$ is divisible by 4, so $a \equiv c$.

(b) Show that if two integers satisfy the relation in part (a), then they have the same remainder when divided by 4 (refer to Theorem 6.1.2 and Exercise 6.4.7).

Theorem 6.1.2. (The Division Algorithm) If $a, b \in \mathbb{N}$, then there is a unique pair of integers, q and r, with $q \ge 0$ and $0 \le r < b$, such that $a = q \cdot b + r$

(q is called the quotient, and r the remainder).

6.4.7. There are ways to generalize the Division Algorithm (Theorem 6.1.2), so that it can be applied to all integers (both positive and negative). Here is one possible generalization.

If $a, b \in \mathbb{Z}$, with $b \neq 0$, then there is a unique pair of integers, q and r, with $0 \leq r < |b|$, such that $a = q \cdot b + r$.

Note that the remainder is still required to be nonnegative, so for instance, if we divide -21 by -4, the quotient is 6 and the remainder is 3, as $-21 = 6 \cdot (-4) + 3$.

(a) Find the quotient and the remainder, obtained when dividing a by b.

a = 27 and b = -8.
a = -15 and b = 2.
a = -36 and b = -9.
a = -36 and b = -9.

(you don't have to actually do 64.7 as an exercise) $b = q_b \cdot 4 + r_b$ $O \leq r_a r_b \leq 4$

Show ra=rb:

 $a \equiv b$ if and only if a - b is divisible by 4.

Suppose 4/ 9-6.

by the division algorithm,

and 26, rp such that

there exist unique integers qa, va

(b) Prove the generalized version of the Division Algorithm given above. (Hint: Instead of using induction, proceed by cases, and refer to Theorem 6.1.2.)

41 -

• a = -36 and b = -9.

Show ra = rb:

(b) Prove the generalized version of the Division Algorithm given above. (<u>Hint</u>: Instead of using induction, proceed by cases, and refer to Theorem 6.1.2.)

41 a-b

$$\Rightarrow 41 q_{c} \cdot 4 + r_{a} - q_{b} \cdot 4 + r_{b}$$

$$\Rightarrow 41 (4(q_{a} - q_{b})) + r_{a} - r_{b}$$
Since 41 (4(q_{a} - q_{b})) + r_{a} - r_{b}
Since 41 (4(q_{a} - q_{b})), it follows that
4) $r_{a} - r_{b}$.
05. $r_{a} \leq 3$, $0 \leq r_{b} \leq 3$
So $-3 \leq r_{a} - r_{b} \leq 3$
The only integer between -3 and 3
that is divisible by 4 is 0.
So $r_{a} - r_{b} = 0 \Rightarrow r_{a} = r_{b}$

2) Define, on the set of integers, the following equivalence relation.

- $k \sim l$ if and only if |k| = |l|.
- (a) Prove that the above relation is indeed an equivalence relation.

. Reflerive:
$$|k| = |k|$$
 $\forall k \in \mathbb{Z}$.
. Symmetric: $if |k| = |k|$, then $|e| = |k|$. $\forall k, e \in \mathbb{Z}$.
. Transitive: $if |k| = |e|$, and $|l| = |m|$, then $|k| = |m|$ $\forall k, k, m \in \mathbb{Z}$.

(b) Describe the equivalence classes for this relation.

Definition 7.3.1. Let R be an equivalence relation on a set S, and
$$x \in S$$
.
The equivalence class of x is the set of all elements $y \in S$, which are equivalent to x:
 $\{y \in S : (x, y) \in R\}.$
We denote the equivalence class of x by $[x].$
We denote the equivalence class of x by $[x].$
 $(-1) = -(-1) + (-1)$

3) Let $f:A\to B$ be an arbitrary function. Prove that the relation

 $x \sim y$ if and only if f(x) = f(y),

on the set A, is an equivalence relation.

~ ·

Reflexive: f(x)= f(x) YX (A.

Symmetric: if f(x)= f(y), then f(y): f(x) &x, y t A.

Transitive: if f(x) = f(y), and f(y) = f(z), then f(x) = f(z) if $x_1, y_1, z \in A$.