w11

09 August 2021 14:42

it's the last tutorial! :D

- topics: --
- equivalence relations
	- equivalence classes
	- modular arithmetic (hidden in the problems)

Definition 7.2.1. An equivalence relation R on a set S is a relation (that is, $R \subseteq S \times S$), such that: (a) For any $x \in S$, $(x, x) \in R$ (**reflexive** property). (b) For any $x, y \in S$, if $(x, y) \in R$, then $(y, x) \in R$ (symmetric property). (c) For any $x, y, z \in S$, if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$ (**transitive** property).

1) (a) Prove directly, that the following relation, on the set of integers, is an equivalence relation.

 $a \equiv b$ if and only if $a - b$ is divisible by 4.

Refkrice: is
$$
a \equiv a
$$
 $\forall a \in \mathbb{Z}$?
\n $yes!$ $0-a=0$ which is divisible by 4.
\n $3yawetric!$ does $a \equiv b \Rightarrow b \equiv a?$
\n $yes!$ if $a \equiv b$, then $a-b = 4k$ $44 \Rightarrow we k \in \mathbb{Z}$.
\n $10xsine$: $doos$ $a \equiv b \Rightarrow b = c$ $0 \equiv a$.
\n $10xsine$: $doos$ $a \equiv b$, $b = c \Rightarrow a = \frac{\pi}{2}c$.
\n $9e s!$ if $a \equiv b$, $b = c$
\n $9e s$ $0 \equiv a$.
\n $9e s$ $0 \equiv a$.
\n $9e s$ $0 \equiv a$.
\n $3e$ $a = b \Rightarrow b = c$
\n $9e s$ $0 \equiv a$.
\n $10xsinh e$ $0 \Rightarrow a = c$ if $a \Rightarrow b = c$
\n $0 = 2(a-bfbe-c)$
\n $= 4k+4k+4k+4k+8$
\n $3e$ $a = c$ if $a \Rightarrow b = 4k$ $4e$ $3e$ $a = 2$.

(b) Show that if two integers satisfy the relation in part (a), then they have the same remainder when divided by 4 (refer to Theorem 6.1.2 and Exercise 6.4.7).

Theorem 6.1.2. (The Division Algorithm) If $a, b \in \mathbb{N}$, then there is a unique pair of integers, q and r, with $q \ge 0$ and $0 \le r < b$, such that $a = q \cdot b + r$

 $(q$ is called the **quotient**, and r the **remainder**).

6.4.7. There are ways to generalize the Division Algorithm (Theorem $6.1.2$), so that it can be applied to all integers (both positive and negative). Here is one possible generalization.

> If $a, b \in \mathbb{Z}$, with $b \neq 0$, then there is a unique pair of integers, q and r, with $0 \leq r < |b|$, such that $a = q \cdot b + r$.

Note that the remainder is still required to be nonnegative, so for instance, if we divide -21 by -4 , the quotient is 6 and the remainder is 3, as $-21 = 6 \cdot (-4) + 3$.

(a) Find the quotient and the remainder, obtained when dividing \boldsymbol{a} by $\boldsymbol{b}.$

• $a = 27$ and $b = -8$. • $a = 5$ and $b = -7$. $\bullet\;\; a=-15$ and $b=2.$ • $a = -4$ and $b = 9$. • $a = -36$ and $b = -9$.

 \mathbf{I}

(b) Prove the generalized version of the Division Algorithm given above. (Hint: Instead of using induction, proceed by cases, and refer to Theorem $6.1.2$) $a \equiv b$ if and only if $a - b$ is divisible by 4.

$$
\text{Suppse} \qquad \text{4|a-b}.
$$

by the division algorithm,
there exist unique integers
$$
q_{a_1}v_{a_2}
$$

and $q_{b_1}r_{b_1}$ such that

$$
a = q_a \cdot 4 + r_a
$$
 04 $8 \cdot 16 + 4$

(you don't have to actually do 6.4.7 as an exercise) $\int_{\mathcal{L}}$ and $\int_{\mathcal{L}}$ b. $(4 + r)$

$$
S
$$

$$
\mathcal{L}_{\mathsf{H}}\circ\mathcal{L}
$$

 $\bullet\;\; a = -36$ and $b = -9.$

Show r_a = r_b :

(b) Prove the generalized version of the Division Algorithm given above. $(\underline{\text{Hint}}\text{: Instead of using induction, proceed by cases, and refer to Theorem 6.1.2.)}$

41 a-b
\n
$$
41 a-b
$$
\n
$$
41 a-ab + r a - r b
$$
\n
$$
51 a c + 14 (q a - q b) + 14 (q a - q b) + 14 (q a - q b)
$$
\n
$$
41 r a - r b
$$
\n
$$
65 - 3 \le r a - r b \le 3
$$
\n
$$
71 a - r b
$$
\n
$$
72 - r b
$$
\n
$$
83 - r b
$$
\n
$$
84 - r b
$$
\n
$$
85 - r a - r b
$$
\n
$$
87 - r b
$$
\n
$$
88 - r a - r b
$$
\n
$$
89 - r a - r b
$$
\n
$$
81 - r b
$$
\n
$$
81 - r b
$$
\n
$$
82 - r b
$$

2) Define, on the set of integers, the following equivalence relation.

 $k \sim l$ if and only if $|k| = |l|$.

(a) Prove that the above relation is indeed an equivalence relation.

\n- \n
$$
\text{Rafkive: } |k| = |k|
$$
\n $\forall k \in \mathbb{Z}$ \n
\n- \n $\text{Symmetric:} \quad \text{if} \quad |k| = |k|$, then $\text{left:} \quad \forall k, k \in \mathbb{Z}$ \n
\n- \n $\text{Tussitive:} \quad \text{if} \quad |k| = |k|$, and $|l| = |m|$, then $|k| \ge |m|$ \n $\forall k, l, m \in \mathbb{Z}$ \n
\n

(b) Describe the equivalence classes for this relation.

Definition 7.3.1. Let *R* be an equivalence relation on a set *S*, and
$$
x \in S
$$
.

\nThe equivalence class of *x* is the set of all elements $y \in S$, which are equivalent to *x*:

\n
$$
\{y \in S : (x, y) \in R\}.
$$
\nWe denote the equivalence class of *x* by $[x].$

\n
$$
\begin{bmatrix}\n0 \\
7\n\end{bmatrix}\n\begin{bmatrix}\n-\sqrt{3} \\
-\sqrt{2}\n\end{bmatrix}.
$$

\n
$$
\begin{bmatrix}\n1 \\
7\n\end{bmatrix}\n\begin{bmatrix}\n-\sqrt{3} \\
-\sqrt{1} \\
\end{bmatrix}.
$$

\n
$$
\begin{bmatrix}\n1 \\
7\n\end{bmatrix}\n\begin{bmatrix}\n-\sqrt{3} \\
-\sqrt{1} \\
\end{bmatrix}.
$$

\n
$$
\begin{bmatrix}\n1 \\
7\n\end{bmatrix}\n\begin{bmatrix}\n-\sqrt{3} \\
-\sqrt{1} \\
\end{bmatrix}.
$$

\n
$$
\begin{bmatrix}\n1 \\
7\n\end{bmatrix}\n\begin{bmatrix}\n-\sqrt{3} \\
-\sqrt{1} \\
\end{bmatrix}.
$$

\n
$$
\begin{bmatrix}\n1 \\
7\n\end{bmatrix}\n\begin{bmatrix}\n-\sqrt{3} \\
-\sqrt{1} \\
\end{bmatrix}.
$$

\n
$$
\begin{bmatrix}\n1 \\
7\n\end{bmatrix}\n\begin{bmatrix}\n-\sqrt{3} \\
-\sqrt{1} \\
\end{bmatrix}.
$$

3) Let $f:A\to B$ be an arbitrary function. Prove that the relation

 $x \sim y$ if and only if $f(x) = f(y)$,

on the set ${\cal A},$ is an equivalence relation.

 \sim \sim

 $Refkwe = f(s) = f(s)$ $\forall x \in A$.

 S_{Y} and $f(x) = f(x) = f(y)$, then $f(y) = f(x)$ $\forall x, y \in A$.

Transitive: if $F(x)=f(y)$ and $f(y)=f(z)$, then $f(z)=f(z)$ $\forall x,y,z \in A$.