hmm... today's tutorial will be kinda short. :p

topics:

strong induction yea that's it. ask any questions you have!

1) Check the proof of Theorem 4.5.4 again. The theorem states: every natural number n can be expressed as a sum of distinct nonnegative integer powers of 2. try a few examples! how would the induction step work for Explain why it is essential to apply strong induction. $= 8$, and k = 9, for example?

Theorem 4.5.4. Every natural number n can be expressed as a sum of distinct nonnegative integer powers of $2.\overline{3}$

Proof. The base case is easily verified, as $1 = 2^0$.

Let $k \in \mathbb{N}$, and assume that the theorem holds true for $n = 1, 2, 3, ..., k$. We need to prove that $k + 1$ can be expressed as a sum of distinct nonnegative integer powers of 2, and we do that by looking at the following two possible cases.

• Case 1: k is even.

By assumption, the theorem applies to $n = k$, and so we can write

$$
k = 2^{a_1} + 2^{a_2} + \cdots + 2^{a_m},
$$

where a_1, \ldots, a_m are distinct **positive** integers. As k is even, the term 2^0 does not appear in the sum. Consequently. $P(1): 1 = 2^0$

 $k+1=2^0+2^{a_1}+2^{a_2}+\cdots+2^{a_m}$.

and we have expressed $k + 1$ in the required form.

• Case 2: k is odd.

hypothesis applies, and we have

 $P(\delta)$ δ - 2^{3}

 \downarrow = \downarrow

 \Box

 $p(2)$ 2 = 2 The argument used in Case 1 won't work here (why?), so we use a different approach. As k is odd, $k+1$ is even, and we can write $k+1=2m$, for some $m \in \mathbb{N}$. As m is smaller than $k+1$, the induction $P(Z)$ $7 - 2 + 2 + 2^0$

$$
m = 2^{a_1} + 2^{a_2} + \cdots + 2^{a_m}.
$$

for some nonnegative distinct integers a_1, \ldots, a_m (this time, one of the a_i 's may be zero!).

We conclude that

$$
k+1 = 2m = 2^{a_1+1} + 2^{a_2+1} + \cdots + 2^{a_m+1},
$$

as needed. Note that since a_1, a_2, \ldots, a_m are distinct, so are $a_1 + 1, a_2 + 1, \ldots, a_m + 1$.

We proved the theorem for $n = k + 1$, and hence, by strong induction, for any $n \in \mathbb{N}$.

in case 2, we don't actually assume that $m = k$, all we know is that $1 \le m \le k$, if we use simple in duction instead, then the induction hypothesis $(P(k))$ might not necessarily apply to m, as m induction instead, then the induction hypothesis $(P(k))$ might not necessarily apply to m, as m might not be equal to k; while in strong induction as long as $1 \le m \le k$ (and m is an integer) we may apply the induction hypothesis.

2) Check the proof for Theorem 4.5.1 again. The theorem states: every natural number $n \geq 2$ can be written as a product of prime numbers. Explain how the induction hypothesis is applied to prove the claim.

Theorem 4.5.1. Every natural number $n \geq 2$ can be written as a product of prime numbers.

Proof. We use strong induction in our proof, and $n = 2$ as our base case.

If $n = 2$, the theorem is valid, as 2 is a prime number. Assume that the theorem holds true for $n = 2, 3, 4, \ldots, k$ (for some natural number $k \ge 2$), and consider $n = k + 1$. If $k + 1$ happens to be a prime number, the theorem applies. Otherwise, $k + 1$ is composite, and is divisible by some natural number $2 \leq m \leq k$. Equivalently, $k + 1 = m \cdot \ell$, where m, ℓ are natural numbers between 2 and k.

Both m and l are natural numbers, greater than 1 and smaller than $k + 1$, and hence covered by the induction hypothesis. Therefore, m and ℓ are products of prime numbers, and consequently, so is $k+1=m\cdot\ell.$

By PSMI, the theorem is valid for all natural numbers $n \geq 2$.

because m and I need to be covered by the induction hypothesis! we don't know if m = k or l = h; all une know is that 2 $\tan \ell = k$

 \Box

again, try some examples! how would the induction step apply to k = 7 and $= 18$, for example?

 $\kappa + 1 = m \cdot \ell.$

By PSMI, the theorem is valid for all natural numbers $n \geq 2$.

because m and l need to be covered by the induction hypothesis! we don't know if m = k or l = k; all we know is that 2 <= m <= k.

 $8 = \bigoplus_{n=1}^{\infty} \bigotimes_{i=1}^{\infty} = 1.2.2$ JH 74 $4 - 2 - 2$

 $\ddot{}$

 \Box

3) Let (a_n) be a sequence satisfying $a_n = 2a_{n-1} + 3a_{n-2}$ for $n \ge 3$. Given that a_1 and a_2 are odd, prove that a_n is odd for $n \in \mathbb{N}$.

What to the
$$
P(n)
$$
: 'a, is add
\nwhere $P(n)$: 'a, is odd
\n $P(z)$
\n $Q(z)$
\n $Q(k-1), P(k)$
\n $Q(k+1) : 'a_{k+1}$
\n $Q(k+2), R(k+1)$
\n $Q(k+1) : 'a_{k+1}$
\n $Q(k+2), R(k+1)$
\n $Q(k+1)$
\n $$