2) Using desmos.com investigate if the following polynomials are injective or surjective. Please note while desmos (or any other graphing tool) can be helpful to make a good ob-servation it is NOT a way to prove any mathematical claims. No proof based on the graph will be accepted in this course. This exercise is for observation only.

 $f(x): f(y) \Rightarrow \chi \cdot y$

3) Can we say any polynomial of an odd degree from $\mathbb R$ to $\mathbb R$ is surjective? Can we say any polynomial of an even degree from $\mathbb R$ to $[0,\infty)$ is surjective?

You might need some calculus and the Intermediate Value Theorem, if you are not familiar with it you can skip it.

Every polynomial of odd degree is surjective.* Intuitively, polynomials of odd degree "span" the whole y axis; every horizontal line has to intersect the graph somewhere.

Polynomials of even degree from R to [0, infinity) need not be surjective. Take $p(x) = x^2 + 1$ for example: this never reaches 0 (which is in the codomain), so this isn't surjective.

Formal proof of * using the intermediate value theorem (IVT):

Suppose
$$p(s): a_{2}k + a_{1,2}k^{-1} + \dots + a_{1,2} k + a_{0}$$
 is a polynomial of add degree
(k is add, $a_{1,2}k^{+1}$).
Let $y \in \mathbb{R}$. We find $x \in \mathbb{R}$ s.t. $p(x):y$.
(are 1: $a_{1,2} > 0$.
Then $lin p(x):z\infty$. So there exists $b \in l\mathbb{R}$ s.t. $p(b) \ge y$.
 $2 \ge \infty$. We may choose $b \ge 0$ if necessary.
 $lin p(x):-\infty$. So there exists $a \in \mathbb{R}$ s.t. $p(a) \le y$.
We may choose $a < 0$ if necessary.

a26)

New Section 1 Page 1

Since a < b and $p(a) \leq y \leq p(b)$, and p is continuous,

the INT opplies, so there is some 2E[0,6] s.t. p(x)=y. This shows p is surjective.

do the same thing ! but flipped.

4) Consider the following functions: $f : \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$, f(m) = (2m, m-1) and $g : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, g(m,n) = |m.n|.

(a) Is f injective? Explain.

Y

 $g_{4(1)} = g(f(x))$ (b) Is g surjective? Explain. "cia"

(c) State the domain and the codomain of $g \odot f$, and write a formula for this composition.

(d) State the domain and the codomain of $f\circ g,$ and write a formula for this composition.

(a)
$$f_{i_1}$$
 injective: Suppose $m_i n \in \mathbb{Z} - \frac{f(n) = f(n)}{2n_i n - 1} = (2n_i n - 1)$
=> $2m = 2n$ and $m - 1 = n - 1$
(b) g_{i_1} is surjective: Let $y_i = 1$.
 $g_{(m_i n)} = |m \cdot n| \ge 0 \ddagger 1$
domain of f_{i_1} any $(m_i n) \in \mathbb{Z} \times \mathbb{Z}$.
(c) $g_{o}f_{i_1} = \mathbb{Z} \to \mathbb{Z} \vdash (odarrin - i_i_i_i_i_i) = (2m^2 - 2m)$
(d) $f_{o}g_{i_1} = \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Q}$, $(f_{o}g_{i_1})(m_i n) = f(g_{(m_i n)}) = f(1n \cdot n!) = (21n \cdot n! - 1)$.
 f_{i_1} is the reduction of g_{i_1} is the reduction of g_{i_1} is the reduction of f_{i_1} is the reduction of f_{i