Problem 1 Let $p(x) = b^2 x^2 - (b-1)x - \frac{1}{4}$. Determine, for which $b \in \mathbb{R}$,^{*a*} does p(x):

- (a) have no roots.
- (b) have exactly one root.
- (c) have two roots.

Solution To apply the quadratic formula to find the number of roots of $ax^2 + bx + c$, we need to first ensure that $a \neq 0$. So we have two cases:

- b = 0: then $p(x) = x \frac{1}{4}$, so p(x) has one root (since it's a linear function with nonzero slope).
- $b \neq 0$: then $b^2 \neq 0$ so we may apply the quadratic formula. The discriminant of p(x) is

$$\Delta = (-(b-1))^2 - 4b^2 \left(-\frac{1}{4}\right) = (b-1)^2 + b^2.$$

We notice that the discriminant is always nonnegative, since $(b-1)^2$, $b^2 \ge 0$. Even more precisely, the discriminant is always positive, since for $(b-1)^2 + b^2 = 0$ to hold, both $(b-1)^2 = 0$ and $b^2 = 0$ must hold simultaneously which is impossible.

Since the discriminant is always positive, p(x) has two roots.

 ${}^{a}\mathbb{R}$ stands for the **real numbers**.

Problem 2

Consider the following "proof" of the mathematical statement "for all $x \neq 0$, $\frac{49}{x^2} + 5 + x^2 \ge 21$ ".

Proposition. For all $x \neq 0$, $\frac{49}{x^2} + 5 + x^2 \ge 21$. Proof.

$$\frac{49}{x^2} + 5 + x^2 \ge 21$$

$$\Rightarrow \frac{49}{x^2} + x^2 \ge 16$$

$$\Rightarrow \frac{49}{x^2} + x^2 \ge 8$$

$$\Rightarrow \frac{\frac{49}{x^2} + x^2}{2} \ge 7$$

$$\Rightarrow \frac{\frac{49}{x^2} + x^2}{2} \ge \sqrt{49}$$

$$\Rightarrow \frac{\frac{49}{x^2} + x^2}{2} \ge \sqrt{\frac{49}{x^2} \cdot x^2}$$
(a)

(arithmetic-geometric mean inequality).

Identify some mathematical proof quality issues with the above "proof". Is the original statement true? If so, rewrite the proof of the statement; if not, modify the statement so that it is true, and then rewrite the proof of the statement.

Solution Here are some issues with the proof:

- The proof starts with the statement to be proven, and derives a true statement from the statement to be proven. Instead, a mathematical proof should always start with a statement already known to be true (such as the AGM inequality), and use this statement to derive the statement to be proven.
- Language is rarely used to guide the reader; the proof mostly consists of a list of inequalities.
- The derivation of the inequalities is somewhat unclear.^a

Indeed, the statement that was "proven" is not true. We can see this by substituting $x = \sqrt{7}$:^b

$$\frac{49}{\sqrt{7}^2} + 5 + \sqrt{7}^2 = 7 + 5 + 7 = 19 \not\ge 21.$$

However, we can prove the following statement: "for all $x \neq 0$, $\frac{49}{x^2} + 5 + x^2 \geq 19$ ". We will first perform some rough work in a style similar to the incorrect proof, but this rough work will be excluded from our actual proof.

Rough Work

$$\frac{49}{x^2} + 5 + x^2 \ge 1$$
$$\Rightarrow \frac{49}{x^2} + x^2 \ge 14$$

An alternative way to write the AGM inequality is $a + b \ge 2\sqrt{ab}$ (assuming $a, b \ge 0$).^c Indeed, applying this form of the AGM inequality to the above (which is allowed since $\frac{49}{r^2}, x^2 \ge 0$),

$$\frac{49}{x^2} + x^2 \ge 2\sqrt{\frac{49}{x^2} \cdot x^2} = 2\sqrt{49} = 14.$$

Now we can write the proof.

Proof. Since $\frac{49}{x^2}$, $x^2 \ge 0$, we may use the AGM inequality to obtain

$$\frac{\frac{49}{x^2} + x^2}{2} \ge \sqrt{\frac{49}{x^2} \cdot x^2} = 7.$$

Multiplying both sides by 2, then adding 5 to both sides,

$$\frac{49}{x^2} + 5 + x^2 \ge 2 \cdot 7 + 5 = 19.$$

This completes the proof.

^aWhat constitutes a "clear" derivation will depend on audience and context; you will have to balance clarity and conciseness depending on your target audience.

^bI got this value for x by attempting to minimize $\frac{49}{x^2} + 5 + x^2$ so that it's not ≥ 21 . Minimizing $\frac{49}{x^2} + 5 + x^2$ is the same thing as minimizing $\frac{1}{2}\left(\frac{49}{x^2} + x^2\right)$ (why?), and we know from the AGM inequality that $\frac{1}{2}\left(\frac{49}{x^2} + x^2\right)$ is minimized when $\frac{49}{x^2} = x^2$, or $x^4 = 49$ which gives $x = \pm\sqrt{7}$.

^cThis may be useful for spotting where the AGM inequality can be used.

Problem 3 If a, b > -1, prove that $\frac{a+b}{2} + 1 \ge \sqrt{(a+1)(b+1)}$.

Solution

Rough Work

$$\frac{a+b}{2} + 1 \ge \sqrt{(a+1)(b+1)}$$

$$\Rightarrow \frac{a+b}{2} + \frac{2}{2} \ge \sqrt{(a+1)(b+1)}$$

$$\Rightarrow \frac{a+1+b+1}{2} \ge \sqrt{(a+1)(b+1)}$$

The above is just the AGM inequality applied to a + 1 and b + 1. The square root version of the AGM inequality can be applied since a, b > -1 ensures $a + 1, b + 1 \ge 0$.

Proof. Since a, b > -1, we have a + 1, b + 1 > 0, so by the AGM inequality,

$$\frac{(a+1) + (b+1)}{2} \ge \sqrt{(a+1)(b+1)}.$$

We may rewrite the left side to obtain

$$\frac{a+b}{2} + \frac{2}{2} \ge \sqrt{(a+1)(b+1)}$$

or

$$\frac{a+b}{2}+1 \geq \sqrt{(a+1)(b+1)}$$

as needed.

Comment. An alternative proof involves square both sides and expanding, but this approach is more tedious.