Problem 1

Is it possible to find $x, y \in \mathbb{Z}$ such that 5x + 11y = 4? Solution

Yes, because $gcd(5,11) = 1 \mid 4$. We will first find $m, n \in \mathbb{Z}$ such that 5m + 11n = 1, and then multiply both sides by 4 to get the desired x and y.

To find m, n with 5m + 11n = 1, we perform the Euclidean algorithm on 5 and 11, and then back substitute:

 $gcd(11,5) = gcd(5,1) \qquad (11 = 2 \cdot 5 + 1) \\ = gcd(1,0) \qquad (5 = 5 \cdot 1 + 0) \\ = 1.$

 $1 = 11 - 2 \cdot 5.$

So m = -2 and n = 1 gives us 5m + 11n = 1. Thus x = -8 and y = 4 should give us 5x + 11y = 4.

Problem 2

Let p be prime, and $a \in \mathbb{N}$. Show that $p \mid a^2$ if and only if $p \mid a$. Solution

- (\Rightarrow) If $p \mid a^2$, then by Euclid's lemma, $p \mid a$ or $p \mid a$. Either way, $p \mid a$ as needed.
- (\Leftarrow) If $p \mid a$, then $p \mid ka$ for all integers $k \in \mathbb{Z}$. So of course $p \mid a \cdot a = a^2$.

Problem 3

Let $a, n \in \mathbb{N}$. Show that there is $k \in \mathbb{N}$ such that $ak \equiv 1 \mod n$ if and only if gcd(a, n) = 1. Solution

- (\Rightarrow) Suppose there is $k \in \mathbb{N}$ such that $ak \equiv 1 \mod n$. Then by definition, $n \mid ak 1$. Let $\ell \in \mathbb{Z}$ so that $n\ell = ak 1$. Rearranging, we have $1 = ak n\ell$. Since $gcd(a, n) \mid a$ and $gcd(a, n) \mid n$, it follows $gcd(a, n) \mid ak n\ell$. Thus $gcd(a, n) \mid 1$; the only natural number that divides 1 is 1 itself, so gcd(a, n) = 1 as needed.
- (\Leftarrow) Suppose gcd(a, n) = 1. Using Bézout's identity, find $k, \ell \in \mathbb{Z}$ such that

 $ak + n\ell = 1.$

Rearranging, $ak - 1 = n\ell$, which shows $ak \equiv 1 \mod n$.

Problem 4

1. Find an equivalence relation over $\mathbb R$ that satisfies the following:

- The equivalence relation has uncountably infinitely many equivalence classes.
- Each equivalence class has countably many members.

2. Find an equivalence relation over \mathbb{R} that satisfies the following:

- The equivalence relation has countably infinitely many equivalence classes.
- Each equivalence class has uncountably infinitely many members.

Solution

• Consider the equivalence relation \sim over \mathbb{R} defined as

$$x \sim y \Leftrightarrow x - y \in \mathbb{Z}.$$

This is an equivalence relation over \mathbb{R} :

- For all $x \in \mathbb{R}$, $x x = 0 \in \mathbb{Z}$, so $x \sim x$.
- For all $x, y \in \mathbb{R}$, if $x \sim y$, then $x y \in \mathbb{Z}$, so $y x = -(x y) \in \mathbb{Z}$ which implies $y \sim x$.
- For all $x, y \in \mathbb{R}$, if $x \sim y$ and $y \sim z$, then $x-y, y-z \in \mathbb{Z}$. Then $x-z = (x-y)+(y-z) \in \mathbb{Z}$, so $x \sim z$.

To show that there are uncountably many equivalence classes, notice that every number in (0, 1) belongs in a distinct equivalence class (and there are uncountably many such numbers). This is because there are no 0 < x, y < 1 such that $x-y \in \mathbb{Z}$. Given any $x \in \mathbb{R}$, the equivalence class of x is

$$[x] = \{x + n : n \in \mathbb{Z}\}$$

which is countable.

• Consider the equivalence relation \sim over $\mathbb R$ defined as

$$x \sim y \Leftrightarrow \lfloor x \rfloor = \lfloor y \rfloor$$

where $\lfloor x \rfloor$ is the largest integer $\leq x$. This is an equivalence relation:

- For all $x \in \mathbb{R}$, |x| = |x|, so $x \sim x$.
- For all $x, y \in \mathbb{R}$, if $x \sim y$, then |x| = |y|, so |y| = |x| giving us $y \sim x$.
- For all $x, y, z \in \mathbb{R}$, if $x \sim y$ and $y \sim z$, then $\lfloor x \rfloor = \lfloor y \rfloor = \lfloor z \rfloor$, so $x \sim z$.

There are countably many equivalence classes: ..., $[-2], [-1], [0], [1], [2], \ldots$ The equivalence class of any $x \in \mathbb{R}$ is the interval

$$[x] = [\lfloor x \rfloor, \lfloor x \rfloor + 1)$$

which is uncountable.

Problem 5

Show that 7270324727853158 is not a square number without using a calculator. *Hint: There are no square numbers in the sequence* 2, 6, 10, 14,

Solution

We show that for any $n \in \mathbb{N}$, if n is a square number, then $n \not\equiv 2 \mod 4$. This shows 7270324727853158 is not a square number, as the remainder of 7270324727853158 when divided by 4 is the same as the remainder of 58 divided by 4, which is 2.

Suppose $n \in \mathbb{N}$ is a square number. Let $a \in \mathbb{N}$ be such that $a^2 = n$. We have four cases:

- $a \equiv 0 \mod 4$: Then $a^2 \equiv 0 \cdot 0 = 0 \mod 4$.
- $a \equiv 1 \mod 4$: Then $a^2 \equiv 1 \cdot 1 = 1 \mod 4$.
- $a \equiv 2 \mod 4$: Then $a^2 \equiv 2 \cdot 2 = 4 \equiv 0 \mod 4$.
- $a \equiv 3 \mod 4$: Then $a^2 \equiv 3 \cdot 3 = 9 \equiv 1 \mod 4$.

In all cases, we have $a^2 \not\equiv 2 \mod 4$ as needed.