
Tutorial 1 MAT102H5 S2022

Problem 1
Let A,B be subsets of some universal set U . Prove that A \BC = A ∩B.
Solution
Proof. We must show that A \BC ⊆ A ∩B and A ∩B ⊆ A \BC .

• A \ BC ⊆ A ∩ B: Suppose x ∈ A \ BC . Then x ∈ A and x /∈ BC . Since x /∈ BC , we have
x ∈ (BC)C . But B = (BC)C , so x ∈ B. Combining x ∈ A with x ∈ B, we have x ∈ A ∩ B as
needed.

• A ∩ B ⊆ A \ BC : Suppose x ∈ A ∩ B. Then x ∈ A and x ∈ B. Since B = (BC)C , x ∈ (BC)C as
well, so x /∈ BC . Combining x ∈ A with x /∈ BC , we have x ∈ A \BC .

Comment. You may notice that our proof of A ∩ B ⊆ A \ BC is just our proof of A \ BC ⊆ A ∩ B
written backwards. A lot of set identity proofs are like this; however in general when we are proving
two sets are equal, this strategy of writing backwards may not work (as some parts of your proof may
no longer be true when written backwards).

Problem 2

1. Let S = {1, 2, 3}. List all subsets of S.

2. Let S be a finite set with n elements. How many distinct subsets of S are there?

Solution

1. There are 8 subsets in total: ∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.

2. There are 2n distinct subsets of S. Labelling the elements of S as s1, s2, . . . , sn, notice that to
create a subset of S, we are given two choices on whether to include s1 in our subset, another two
choices on whether to include s2 in our subset, and so on. In total, we are given 2 choices for each
of the n elements of S; thus there are 2n total subsets we can create.

Problem 3

Let f : (2,∞) → R, f(x) =
x+ 1

x2 − 4
. Prove that the range of f , f((2,∞)), is (0,∞).

Solution
Proof.

• f((2,∞)) ⊆ (0,∞): Let y ∈ f((2,∞)). Then by definition there is some x ∈ (2,∞) such that
f(x) = y. Rewriting,

y =
x+ 1

x2 − 4
.

Notice that x + 1 > 0 since x > 2, and x2 − 4 > 0 since x > 2. Thus y is a ratio of positive
numbers, which shows y > 0.

• (0,∞) ⊆ f((2,∞)): Let y ∈ (0,∞). We want to find an x ∈ (2,∞) such that f(x) = y.

Rough Work

y =
x+ 1

x2 − 4

⇒yx2 − 4y = x+ 1

⇒yx2 − x− 4y − 1 = 0
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So to find x ∈ (2,∞) such that f(x) = y, we could attempt to solve for x in the above quadratic.
The discriminant is (−1)2 − 4y(−4y− 1) = 16y2 +4y+1 which is always > 0 since y ∈ (0,∞), so
there are two solutions to the quadratic:

x =
1±

√
16y2 + 4y + 1

2y
.

Recall that we want a solution x ∈ (2,∞); to make it more likely for x > 2, we should always take
the greater of the two solutions. Thus let us define

x =
1 +

√
16y2 + 4y + 1

2y
.

It remains to verify that x > 2 (for any value of y), and f(x) = y. Let us perform some rough
work to show that x > 2:

x > 2

⇒1 +
√
16y2 + 4y + 1

2y
> 2

⇒1 +
√

16y2 + 4y + 1 > 4y (multiplying both sides by 2y which is > 0)

⇒
√
16y2 + 4y + 1 > 4y − 1

Now if 4y−1 is negative (when y ∈ [0, 1
4 )), the above inequality holds (since the left side is always

positive). Otherwise 4y − 1 ≥ 0 so we can square both sides to get

16y2 + 4y + 1 > 16y2 − 8y + 1

which is true since y > 0.

Define

x =
1 +

√
16y2 + 4y + 1

2y
.

First of all, we need to show that x ∈ (2,∞). Since y > 0, we have

16y2 + 4y + 1 > 16y2 − 8y + 1

⇒16y2 + 4y + 1 > (4y − 1)2

⇒
√
16y2 + 4y + 1 > |4y − 1|

⇒
√
16y2 + 4y + 1 > 4y − 1 since |4y − 1| > 4y − 1

⇒1 +
√
16y2 + 4y + 1 > 4y

⇒1 +
√
16y2 + 4y + 1

2y
> 2 since y > 0 we can divide both sides by 2y

⇒x > 2.
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It remains to verify that f(x) = y. Indeed,

f(x) =
x+ 1

x2 − 4

=

1+
√

16y2+4y+1

2y + 1(
1+

√
16y2+4y+1

2y

)2

− 4

=

1+
√

16y2+4y+1

2y + 1

16y2+4y+2+2
√

16y2+4y+1

4y2 − 4

=
2y + 2y

√
16y2 + 4y + 1 + 4y2

16y2 + 4y + 2 + 2
√
16y2 + 4y + 1− 16y2

=
y + y

√
16y2 + 4y + 1 + 2y2

2y + 1 +
√
16y2 + 4y + 1

=
y(2y + 1 +

√
16y2 + 4y + 1)

2y + 1 +
√

16y2 + 4y + 1

= y.

The proof is complete. □

Comment. This question is more difficult than I initially expected; the formulae are not nice. The
important takeaway is the structure of a function range proof. Suppose you are proving that for a
function f : A → B, the range of f is some set D ⊆ B:

• First, prove that f(A) ⊆ D. Let y ∈ f(A), so by definition f(x) = y for some x ∈ A. Use this to
show that y ∈ D.

• Then, show that D ⊆ f(A). Let y ∈ D, and find an x ∈ A such that f(x) = y. Sometimes this
x can be found by “inverting” the formula for f (if f is defined via formula), but sometimes this
approach does not work and you will need to guess the x. Either way, once you find the x ∈ A
(you might have to verify that x ∈ A indeed), you will need to show that f(x) = y.

Problem 4
Find an example of a function f : A → B and sets C,D ⊆ A such that f(C ∩D) ̸= f(C) ∩ f(D).
Solution
Let f : R → R, f(x) = x2. Let C = [−2, 0], D = [0, 2], both of which are subsets of our domain R. We
have f(C) = [0, 4], f(D) = [0, 4].a

aI will provide a proof that f(C) = [0, 4]; the proof for f(D) = [0, 4] is omitted. f(C) ⊆ [0, 4]: let y ∈ f(C). Then
there exists x ∈ C such that y = x2. Certainly x2 ≥ 0. Also, x ∈ C = [−2, 0] implies −2 ≤ x ≤ 0, which means |x| ≤ 2.
Thus x2 = |x|2 ≤ 22 = 4. Thus y = x2 ∈ [0, 4]

Problem 5
Let A be the “set of all sets”. Define S = {X ∈ A : X /∈ X}. Identify a logical contradiction, assuming
the existence of S.a

Solution
Exactly one of S ∈ S or S /∈ S must be true. If S ∈ S, then S ∈ {X ∈ A : X /∈ X}, the set of
all sets that don’t contain themselves, so S /∈ S. However, we’ve assumed that S ∈ S, producing
a logical contradiction. Instead, assume S /∈ S. But since S ∈ A (as S is a set) and S /∈ S, so
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S ∈ {X ∈ A : X /∈ X}. In other words S ∈ S, again producing a contradiction.

aThis contradiction is called Russell’s Paradox, which arises due to our informal and loose definition of a “set” as
a collection of distinct objects. In this course, you won’t have to worry about such malicious examples of “sets”, but it
may be helpful to remember that MAT102 presents a simplified but workable version of set theory.

One way to avoid Russell’s Paradox is to use a more formal axiomatic definition of “set”, such as the Zermelo-Frankel
Axioms (ZF). Under the ZF axioms, sets can’t be a members of themselves (X /∈ X for all sets X).
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