Problem 1

- 1. Provide the definition of a field. List out and name all the field axioms.^a
- 2. List out all the fields you know.

Problem 2

Let $F = \{0, 1, a\}$. Complete the following addition and multiplication tables for F.

Problem 3

Let F be a field, and $a, b \in F$.

- 1. Suppose ab = 0. Show that a = 0 or b = 0. ^a You may use Claim 2.3.2.
- 2. Show that $a^2 b^2 = (a+b)(a-b)$.
- 3. Suppose $a^2 = b^2$. Show that a = -b or a = b.

^{*a*}This is known as the **zero-product property**.

Problem 4

Define $F = \mathbb{R} \times \mathbb{R}$. We define addition + and multiplication \cdot over F in the following way:

- (a,b) + (c,d) = (a+b,c+d) (where a+b and c+d is just addition of real numbers).
- $(a,b) \cdot (c,d) = (ac bd, ad + bc)$ (where again the operations are over real numbers).
- 1. Show that F is a field. Hint: The multiplicative inverse of (a, b) is $\left(\frac{a}{a^2 + b^2}, -\frac{b}{a^2 + b^2}\right)$.
- 2. Show that there is $(a, b) \in F$ such that $(a, b) \cdot (a, b) = -1$ (where -1 is the additive inverse of the additive identity 1 in F).

Comment. F is the complex numbers; (a, b) corresponds with a + bi. This problem asks you to show that the complex numbers form a field.

Problem 5

Suppose $F \subseteq \mathbb{R}$ is a field with addition and multiplication inherited from the real numbers.^{*a*}

- 1. Show that $\mathbb{N} \subseteq F$.
- 2. Show that $\mathbb{Z} \subseteq F$.
- 3. Show that $\mathbb{Q} \subseteq F$.^b

^aConsult Definition 5.13 in the Course Notes if needed.

^aIn other words, to add or multiply any two elements $a, b \in F$, treat a and b as real numbers. ^bThis is Exercise 2.5.52 from the Course Notes.