Problem 1

- 1. Provide the definition of a field. List out and name all the field axioms.^a
- 2. List out all the fields you know.

Solution

- 1. A field F is a set with the operations + and -, distinguished elements 0 and 1 (with $0 \neq 1$), in which the following axioms hold:
 - (a) $x + y, x \cdot y \in F$ for any $x, y \in F$ (closure under addition and multiplication).
 - (b) x + (y + z) = (x + y) + z and $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ for any $x, y, z \in F$ (associativity of addition and multiplication).
 - (c) x+y=y+x and $x \cdot y = y \cdot x$ for any $x, y \in F$ (commutativity of addition and multiplication).
 - (d) x + 0 = x and $x \cdot 1 = x$ for all $x \in F$ (where 0 and 1 are called the **additive identity** and **multiplicative identity** respectively).
 - (e) For any $x \in F$, there is a $w \in F$ such that x + w = 0 (existence of **negatives**). Moreover, if $x \neq 0$, then there is also an $r \in F$ such that $x \cdot r = 1$ (existence of **reciprocals**). We denote w = -x and $r = x^{-1}$.
 - (f) $x \cdot (y+z) = x \cdot y + x \cdot z$ for any $x, y, z \in F$ (distributivity of addition over multiplication).
- 2. \mathbb{R} (with usual addition and multiplication), \mathbb{Q} (with usual addition and multiplication), the field of two elements (addition and multiplication defined in the book), et cetera.

 $^a\mathrm{Consult}$ Definition 5.13 in the Course Notes if needed.

Problem 2

Let $F = \{0, 1, a\}$. Complete the following addition and multiplication tables for F.

+	0	1	a	•	0	1	a
0				0			
1				1			
a				a			

Solution

First of all, we have the following facts:

- 0 + x = 0 for all $x \in F$.
- $0 \cdot x = 0$ for all $x \in F$.
- $1 \cdot x = x$ for all $x \in F$.

This forces us to fill out the tables in the following manner:

+	0	1	a	•	0	1	a
0	0	1	a	0	0	0	0
1	1			1	0	1	a
a	a			a	0	a	

Now if $a \cdot a = 0$ or $a \cdot a = a$, then a (which is $\neq 0$) will not have a multiplicative inverse. So we are forced to put $a \cdot a = 1$.

		1			0		
0	0	1	a		0		
1	1				0		
a	a			a	0	a	1

Let us now consider what 1 + a is. If 1 + a = 1, then adding -1 on both sides, we get a = 0 which is impossible. If 1 + a = a, then 1 = 0 which is impossible. Thus, we are forced to have 1 + a = 0.

+	0	1	a	•	0	1	a
0	0	1	a	0	0	0	0
1	1		0	1	0	1	a
a	a	0		a	0	a	1

Now we consider 1 + 1: if 1 + 1 = 0, then 1 + 1 = 1 + a so 1 = a which is impossible; if 1 + 1 = 1 then 1 = 0 which is impossible. So we are forced to have 1 + 1 = a.

+	0	1	a	·	0	1	a
0	0	1	a	0	0	0	0
1	1	1	0	1	0	1	a
a	a	0		a	0	a	1

Lastly, a + a = 0 produces a + a = a + 1 or a = 1 which is impossible; a + a = a produces a = 0 which is impossible. So a + a = 1.

+	0	1	a	•	0	1	a
0	0	1	a	0	0	1 0	0
1	1	1	0	1	0	1	a
a	a	0	a	a	0	a	1

Problem 3

Let F be a field, and $a, b \in F$.

- 1. Suppose ab = 0. Show that a = 0 or b = 0.^{*a*} You may use Claim 2.3.2.
- 2. Show that $a^2 b^2 = (a + b)(a b)$.
- 3. Suppose $a^2 = b^2$. Show that a = -b or a = b.

Solution

1. To show that a = 0 or b = 0, we assume $a \neq 0$ and show that b = 0. Suppose $a \neq 0$. Then a^{-1} exists. Thus

$$ab = 0$$

$$\Rightarrow a^{-1}(ab) = a^{-1}(0)$$
 multiplying both sides on the left by a^{-1}

$$\Rightarrow (a^{-1}a)b = a^{-1}(0)$$
 associativity of \cdot

$$\Rightarrow 1b = a^{-1}(0)$$
 a and a^{-1} are multiplicative inverses

$$\Rightarrow b = a^{-1}(0)$$
 1 is the multiplicative identity

$$\Rightarrow b = 0$$
 Claim 2.3.2: $0x = 0$ for any $x \in F$

The proof is complete.

F

2. We prove a lemm	na:	
Lemma. $-x = ($	$(-1)x$ for all $x \in F$. <i>Proof.</i>	
	0 = 0	
	$\Rightarrow 0 = 0x$	Claim 2.3.2
	$\Rightarrow 0 = (1 + -1)x$	-1 is the additive inverse of 1
	$\Rightarrow 0 = 1x + (-1)x$	distributivity
	$\Rightarrow 0 = x + (-1)x$	1 is the multiplicative identity
	$\Rightarrow -x + 0 = -x + (x + (-1)x)$	adding $-x$ to the left of both sides
	$\Rightarrow -x = -x + (x + (-1)x)$	0 is the additive identity
	$\Rightarrow -x = (-x+x) + (-1)x$	associativity
	$\Rightarrow -x = 0 + (-1)x$	x is the additive inverse of $-x$
· · · · ((1) = 0 = (1 + 1) = (1 +	

 $\Rightarrow -x = (-1)x0$ is the additive identity

Now we can prove the original statement $a^2 - b^2 = (a + b)(a - b)$. We have

(a+b)(a-b) = (a+b)a + (a+b)(-b)	distributivity
$=a^{2}+ba+a(-b)+b(-b)$	distributivity
$= a^2 + ba + a(-1)b + b(-1)b$	Lemma
$= a^2 + ab + (-1)ab + (-1)b^2$	commutativity
$= a^{2} + ab + (-ab) + (-b^{2})$	Lemma
$=a^2+(-b^2)$	additive inverse
$=a^{2}-b^{2}$	"-x" is just shorthand for "+(-x)"

The proof is complete.

3. If $a^2 = b^2$, then $a^2 - b^2 = 0$, which by part 2 means (a + b)(a - b) = 0. By part 1, this means either a + b = 0 (so a = -b), or a - b = 0 (so a = b).

^aThis is known as the **zero-product property**.

Problem 4

Define $F = \mathbb{R} \times \mathbb{R}$. We define addition + and multiplication \cdot over F in the following way:

- (a,b) + (c,d) = (a+b,c+d) (where a+b and c+d is just addition of real numbers).
- $(a,b) \cdot (c,d) = (ac bd, ad + bc)$ (where again the operations are over real numbers).
- 1. Show that F is a field. Hint: The multiplicative inverse of (a, b) is $\left(\frac{a}{a^2 + b^2}, -\frac{b}{a^2 + b^2}\right)$.
- 2. Show that there is $(a, b) \in F$ such that $(a, b) \cdot (a, b) = -1$ (where -1 is the additive inverse of the additive identity 1 in F).

Comment. F is the complex numbers; (a, b) corresponds with a + bi. This problem asks you to show that the complex numbers form a field. Solution

1. We verify all the field axioms. The additive identity in F will is set to (0,0), while the multiplicative identity in F is set to (1,0).

(a) If $(a, b), (c, d) \in \mathbb{R} \times \mathbb{R}$, then (a + b, c + d) and (ac - bd, ad + bc) are both in $\mathbb{R} \times \mathbb{R}$. (b) ((a, b) + (c, d)) + (e, f) = (a + b + c, d + e + f) = (a, b) + ((c, d) + (e, f)). $((a,b)\cdot(c,d))\cdot(e,f) = (ac - bd, ad + bc)\cdot(e,f)$ = ((ac - bd)e - (ad + bc)f, (ac - bd)f + (ad + bc)e)= (ace - bde - adf - bcf, acf - bdf + ade - bce), $(a,b) \cdot ((c,d) \cdot (e,f)) = (a,b) \cdot (ce - df, cf + de)$ = (a(ce - df) - b(cf + de), a(cf + de) - b(ce - df))= (ace - adf - bcf - bde, acf - ade - bce - bdf).(c) (a,b) + (c,d) = (a+c,b+d) = (c,d) + (a,b). $(a, b) \cdot (c, d) = (ac - bd, ad + bc) = (c, d) \cdot (a, b).$ (d) (a,b) + (0,0) = (a,b) and $(a,b) \cdot (1,0) = (a(1) - b(0), a(0) + b(1)) = (a,b)$, which are the additive and multiplicative identities we have respectively defined. (e) Given $(a, b) \in F$, we have $(-a, -b) \in F$, and (a, b) + (-a, -b) = (0, 0). Given $(a,b) \in F$, we have $\left(\frac{a}{a^2+b^2}, -\frac{b}{a^2+b^2}\right) \in F$, and $(a,b)\cdot\left(\frac{a}{a^2+b^2},-\frac{b}{a^2+b^2}\right)$ $= \left(a\left(\frac{a}{a^2+b^2}\right) - b\left(-\frac{b}{a^2+b^2}\right), a\left(-\frac{b}{a^2+b^2}\right) + b\left(\frac{a}{a^2+b^2}\right)\right)$ $= \left(\frac{a^2 + b^2}{a^2 + b^2}, \frac{-ab + ab}{a^2 + b^2}\right) + b\left(\frac{a}{a^2 + b^2}\right)$ =(1,0).(f) $(a,b) \cdot ((c,d) + (e,f))$ $=(a,b)\cdot(c+e,d+f)$ =(a(c+e) - b(d+f), a(d+f) + b(c+e))= (ac + ae - bd - bf, ad + af + bc + be), $(a,b) \cdot (c,d) + (a,b) \cdot (e,f)$

Problem 5

Suppose $F \subseteq \mathbb{R}$ is a field with addition and multiplication inherited from the real numbers.^{*a*}

=(ac - bd, ad + bc) + (ae - bf, af + be)=(ac + ae - bd - bf, ad + af + bc + be).

- 1. Show that $\mathbb{N} \subseteq F$.
- 2. Show that $\mathbb{Z} \subseteq F$.
- 3. Show that $\mathbb{Q} \subseteq F.^{\mathbf{b}}$

Solution

Let 0_F and 1_F denote the additive and multiplicative identities of F respectively. First, we show that 0_F is the real number 0. We know that $0_F + 1_F = 1_F$ (by property of 0_F being the additive identity). Thus

$$0_F + (1_F - 1_F) = 1_F - 1_F.$$

But notice that in " $1_F - 1_F$ " we are performing subtraction of real numbers; since x - x = 0 for any real number x, we have $1_F - 1_F = 0$ (the real number). So

$$0_F + 0 = 0.$$

In " $0_F + 0$ " we are performing real addition; since x + 0 = 0 for any $x \in \mathbb{R}$, we get

 $0_F = 0.$

Next, we show $1_F = 1$. Similarly, $1_F \cdot 1_F = 1_F$ (by property of 1_F being the multiplicative identity). Thus 1_F satisfies the equation of real numbers $x^2 = x$; the only solutions to $x^2 = x$ are x = 0 or x = 1. Thus $1_F = 0$ or $1_F = 1$; since $1_F \neq 0_F = 0$, we conclude $1_F = 1$.

1. Notice that since 1_F is the real number $1, 1 \in F$. For any natural number $n \in \mathbb{N}$, we have

$$n = \underbrace{1 + \ldots + 1}_{n \text{ times}}.$$

Since F is closed under addition, $\underbrace{1 + \ldots + 1}_{n \text{ times}}$ is in F. This shows $n \in F$. Thus $\mathbb{N} \subseteq F$.

2. Let $n \in \mathbb{Z}$. We split into cases.

- n > 0: then $n \in \mathbb{N}$, and in part 1 we've shown $n \in F$.
- $n = 0: 0 = 0_F \in F.$
- n < 0: then -n > 0, so $-n \in F$. Because F must be closed under additive inverses, $-(-n) = n \in F$ as well.

In all cases, $n \in F$. Thus $\mathbb{Z} \subseteq F$.

3. Let $\frac{p}{q} \in \mathbb{Q}$, with $p, q \in \mathbb{Z}, q \neq 0$. In part 2 we've shown $p, q \in F$. Since F is closed under multiplicative inverses, $q^{-1} \in F$; since F is closed under multiplication, $\frac{p}{q} = pq^{-1} \in F$.

^aIn other words, to add or multiply any two elements $a, b \in F$, treat a and b as real numbers. ^bThis is Exercise 2.5.52 from the Course Notes.