Problem 1

- 1. Provide the definition of [a](#page-0-0) field. List out and name all the field axioms.^{a}
- 2. List out all the fields you know.

Solution

- 1. A field F is a set with the operations + and –, distinguished elements 0 and 1 (with $0 \neq 1$), in which the following axioms hold:
	- (a) $x + y, x \cdot y \in F$ for any $x, y \in F$ (closure under addition and multiplication).
	- (b) $x + (y + z) = (x + y) + z$ and $\overline{x} \cdot (y \cdot z) = (x \cdot y) \cdot z$ for any $x, y, z \in F$ (associativity of addition and multiplication).
	- (c) $x+y=y+x$ and $x \cdot y = y \cdot x$ for any $x, y \in F$ (commutativity of addition and multiplication).
	- (d) $x + 0 = x$ and $x \cdot 1 = x$ for all $x \in F$ (where 0 and 1 are called the **additive identity** and multiplicative identity respectively).
	- (e) For any $x \in F$, there is a $w \in F$ such that $x + w = 0$ (existence of **negatives**). Moreover, if $x \neq 0$, then there is also an $r \in F$ such that $x \cdot r = 1$ (existence of **reciprocals**). We denote $w = -x$ and $r = x^{-1}$.
	- (f) $x \cdot (y + z) = x \cdot y + x \cdot z$ for any $x, y, z \in F$ (distributivity of addition over multiplication).
- 2. R (with usual addition and multiplication), Q (with usual addition and multiplication), the field of two elements (addition and multiplication defined in the book), et cetera.

^aConsult Definition 5.13 in the Course Notes if needed.

Problem 2

Let $F = \{0, 1, a\}$. Complete the following addition and multiplication tables for F.

Solution

First of all, we have the following facts:

- $0 + x = 0$ for all $x \in F$.
- $0 \cdot x = 0$ for all $x \in F$.
- $1 \cdot x = x$ for all $x \in F$.

This forces us to fill out the tables in the following manner:

Now if $a \cdot a = 0$ or $a \cdot a = a$, then a (which is $\neq 0$) will not have a multiplicative inverse. So we are forced to put $a \cdot a = 1$.

Let us now consider what $1 + a$ is. If $1 + a = 1$, then adding -1 on both sides, we get $a = 0$ which is impossible. If $1 + a = a$, then $1 = 0$ which is impossible. Thus, we are forced to have $1 + a = 0$.

Now we consider $1+1$: if $1+1=0$, then $1+1=1+a$ so $1=a$ which is impossible; if $1+1=1$ then $1 = 0$ which is impossible. So we are forced to have $1 + 1 = a$.

Lastly, $a + a = 0$ produces $a + a = a + 1$ or $a = 1$ which is impossible; $a + a = a$ produces $a = 0$ which is impossible. So $a + a = 1$.

Problem 3

Let F be a field, and $a, b \in F$.

- 1. Suppose $ab = 0$ $ab = 0$. Show that $a = 0$ or $b = 0$.^a You may use Claim 2.3.2.
- 2. Show that $a^2 b^2 = (a + b)(a b)$.
- 3. Suppose $a^2 = b^2$. Show that $a = -b$ or $a = b$.

Solution

1. To show that $a = 0$ or $b = 0$, we assume $a \neq 0$ and show that $b = 0$. Suppose $a \neq 0$. Then a^{-1} exists. Thus

$$
ab = 0
$$

\n
$$
\Rightarrow a^{-1}(ab) = a^{-1}(0)
$$
 multiplying both sides on the left by a^{-1}
\n
$$
\Rightarrow (a^{-1}a)b = a^{-1}(0)
$$
 associativity of
\n
$$
\Rightarrow 1b = a^{-1}(0)
$$
 and a^{-1} are multiplicative inverses
\n
$$
\Rightarrow b = a^{-1}(0)
$$
 1 is the multiplicative identity
\ncommutativity of
\n
$$
\Rightarrow b = 0
$$
 0 $2.3.2$: $0x = 0$ for any $x \in F$

The proof is complete. $\hfill \square$

2. We prove a lemma:

Lemma. $-x = (-1)x$ for all $x \in F$. Proof.

$$
0 = 0
$$

\n
$$
\Rightarrow 0 = 0x
$$

\n
$$
\Rightarrow 0 = (1 + -1)x
$$

\n
$$
\Rightarrow 0 = x + (-1)x
$$

\n
$$
\Rightarrow -x + 0 = -x + (x + (-1)x)
$$

\n
$$
\Rightarrow -x = -x + (x + (-1)x)
$$

\n
$$
\Rightarrow -x = (x + x) + (-1)x
$$

\n
$$
\Rightarrow -x = 0 + (-1)x
$$

\n
$$
\Rightarrow -x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

\n
$$
\Rightarrow x = 0 + (-1)x
$$

 $\Rightarrow -x = (-1)x0$ is the additive identity

Now we can prove the original statement $a^2 - b^2 = (a + b)(a - b)$. We have

The proof is complete. \Box

3. If $a^2 = b^2$, then $a^2 - b^2 = 0$, which by part 2 means $(a + b)(a - b) = 0$. By part 1, this means either $a + b = 0$ (so $a = -b$), or $a - b = 0$ (so $a = b$).

^aThis is known as the zero-product property.

Problem 4

Define $F = \mathbb{R} \times \mathbb{R}$. We define addition + and multiplication \cdot over F in the following way:

- $(a, b) + (c, d) = (a + b, c + d)$ (where $a + b$ and $c + d$ is just addition of real numbers).
- $(a, b) \cdot (c, d) = (ac bd, ad + bc)$ (where again the operations are over real numbers).
- 1. Show that F is a field. Hint: The multiplicative inverse of (a, b) is $\left(\frac{a}{a} \right)$ $\frac{a}{a^2+b^2}, -\frac{b}{a^2+b^2}$ $a^2 + b^2$.
- 2. Show that there is $(a, b) \in F$ such that $(a, b) \cdot (a, b) = -1$ (where -1 is the additive inverse of the additive identity 1 in F).

Comment. F is the complex numbers; (a, b) corresponds with $a + bi$. This problem asks you to show that the complex numbers form a field. Solution

1. We verify all the field axioms. The additive identity in F will is set to $(0,0)$, while the multiplicative identity in F is set to $(1, 0)$.

(a) If (a, b) , $(c, d) \in \mathbb{R} \times \mathbb{R}$, then $(a + b, c + d)$ and $(ac - bd, ad + bc)$ are both in $\mathbb{R} \times \mathbb{R}$. (b) $((a, b) + (c, d)) + (e, f) = (a + b + c, d + e + f) = (a, b) + ((c, d) + (e, f)).$ $((a, b) \cdot (c, d)) \cdot (e, f) = (ac - bd, ad + bc) \cdot (e, f)$ $= ((ac - bd)e - (ad + bc)f, (ac - bd)f + (ad + bc)e)$ $= (ace - bde - adf - bcf, acf - bdf + ade - bce),$ $(a, b) \cdot ((c, d) \cdot (e, f)) = (a, b) \cdot (ce - df, cf + de)$ $=(a(ce-df)-b(cf+de), a(cf+de)-b(ce-df))$ $=(ace - adf - bcf - bde, act - ade - bce - bdf).$ (c) $(a, b) + (c, d) = (a + c, b + d) = (c, d) + (a, b).$ $(a, b) \cdot (c, d) = (ac - bd, ad + bc) = (c, d) \cdot (a, b).$ (d) $(a, b) + (0, 0) = (a, b)$ and $(a, b) \cdot (1, 0) = (a(1) - b(0), a(0) + b(1)) = (a, b)$, which are the additive and multiplicative identities we have respectively defined. (e) Given $(a, b) \in F$, we have $(-a, -b) \in F$, and $(a, b) + (-a, -b) = (0, 0)$. Given $(a, b) \in F$, we have $\left(\begin{array}{c}a\\b\end{array}\right)$ $\frac{a}{a^2+b^2}, -\frac{b}{a^2+b^2}$ $a^2 + b^2$ $\Big) \in F$, and $(a, b) \cdot \left(\frac{a}{a} \right)$ $\frac{a}{a^2+b^2}, -\frac{b}{a^2+b^2}$ $a^2 + b^2$ \setminus $=\left(a\left(\frac{a}{a}\right)\right)$ $a^2 + b^2$ $\bigg) - b \bigg(- \frac{b}{2} \bigg)$ $a^2 + b^2$ $\Big)$, $a\Big(-\frac{b}{a}$ $a^2 + b^2$ $\bigg\} + b \bigg(\frac{a}{a} \bigg)$ $a^2 + b^2$ \setminus $=\left(\frac{a^2+b^2}{2+12}\right)$ $\frac{a^2+b^2}{a^2+b^2}$, $\frac{-ab+ab}{a^2+b^2}$ $a^2 + b^2$ $\bigg\} + b \bigg(\frac{a}{a} \bigg)$ $a^2 + b^2$ \setminus $=(1, 0).$ (f) $(a, b) \cdot ((c, d) + (e, f))$ $=(a, b) \cdot (c + e, d + f)$ $=(a(c + e) - b(d + f), a(d + f) + b(c + e))$

Problem 5

Suppose $F \subseteq \mathbb{R}$ $F \subseteq \mathbb{R}$ $F \subseteq \mathbb{R}$ is a field with addition and multiplication inherited from the real numbers.^a

 $=(ac + ae - bd - bf, ad + af + bc + be),$

 $=(ac - bd, ad + bc) + (ae - bf, af + be)$ $=(ac + ae - bd - bf, ad + af + bc + be).$

 $(a, b) \cdot (c, d) + (a, b) \cdot (e, f)$

- 1. Show that $\mathbb{N} \subset F$.
- 2. Show that $\mathbb{Z} \subset F$.
- 3. Show that $\mathbb{Q} \subseteq F$ $\mathbb{Q} \subseteq F$ $\mathbb{Q} \subseteq F$.^b

Solution

Let 0_F and 1_F denote the additive and multiplicative identities of F respectively. First, we show that 0_F is the real number 0. We know that $0_F + 1_F = 1_F$ (by property of 0_F being the additive identity). Thus

$$
0_F + (1_F - 1_F) = 1_F - 1_F.
$$

But notice that in "1 $_F - 1_F$ " we are performing subtraction of real numbers; since $x - x = 0$ for any real number x, we have $1_F - 1_F = 0$ (the real number). So

$$
0_F + 0 = 0.
$$

In " $0_F + 0$ " we are performing real addition; since $x + 0 = 0$ for any $x \in \mathbb{R}$, we get

$$
0_F=0.
$$

Next, we show $1_F = 1$. Similarly, $1_F \cdot 1_F = 1_F$ (by property of 1_F being the multiplicative identity). Thus 1_F satisfies the equation of real numbers $x^2 = x$; the only solutions to $x^2 = x$ are $x = 0$ or $x = 1$. Thus $1_F = 0$ or $1_F = 1$; since $1_F \neq 0_F = 0$, we conclude $1_F = 1$.

1. Notice that since 1_F is the real number $1, 1 \in F$. For any natural number $n \in \mathbb{N}$, we have

$$
n=\underbrace{1+\ldots+1}_{n \text{ times}}.
$$

Since F is closed under addition, $1 + \ldots + 1$ is in F. This shows $n \in F$. Thus $\mathbb{N} \subseteq F$. \overline{n} times

$$
f\in \mathcal{F}^{\infty}(\mathbb{R}^n)
$$

2. Let $n \in \mathbb{Z}$. We split into cases.

- $n > 0$: then $n \in \mathbb{N}$, and in part 1 we've shown $n \in F$.
- $n = 0: 0 = 0_F \in F$.
- $n < 0$: then $-n > 0$, so $-n \in F$. Because F must be closed under additive inverses, $-(-n) = n \in F$ as well.

In all cases, $n \in F$. Thus $\mathbb{Z} \subseteq F$.

3. Let $\frac{p}{q} \in \mathbb{Q}$, with $p, q \in \mathbb{Z}, q \neq 0$. In part 2 we've shown $p, q \in F$. Since F is closed under multiplicative inverses, $q^{-1} \in F$; since F is closed under multiplication, $\frac{p}{q} = pq^{-1} \in F$.

^aIn other words, to add or multiply any two elements $a, b \in F$, treat a and b as real numbers. b This is Exercise 2.5.52 from the Course Notes.