Tutorial 1 MAT102H5 S2022

Problem 1

1. Provide the definition of a field. List out and name all the field axioms.®
2. List out all the fields you know.

Solution
1. A field F is a set with the operations + and —, distinguished elements 0 and 1 (with 0 # 1), in
which the following axioms hold:
(a) x +y,z-y € F for any x,y € F (closure under addition and multiplication).
b)) z+(y+z2) =@+y) +zand z-(y-2) = (x-y) -z for any x,y,z € F' (associativity of
addition and multiplication).
(¢) z+y = y+x and x-y = y-x for any z,y € F (commutativity of addition and multiplication).
(d) 4+ 0=z and -1 =z for all x € F (where 0 and 1 are called the additive identity and
multiplicative identity respectively).

(e) For any x € F, there is a w € F such that z + w = 0 (existence of negatives). Moreover, if
x # 0, then there is also an r € F such that x - r = 1 (existence of reciprocals). We denote

w=—x and r =z~ L.

(f) z-(y+2) =2 -y+x-zforany z,y, z € F (distributivity of addition over multiplication).

2. R (with usual addition and multiplication), Q (with usual addition and multiplication), the field
of two elements (addition and multiplication defined in the book), et cetera.

2Consult Definition 5.13 in the Course Notes if needed.

Problem 2
Let F'={0,1,a}. Complete the following addition and multiplication tables for F'.

+10[1]a - 10| 1]|a
0

1 1

a a

Solution
First of all, we have the following facts:

e 0+z=0forallzekl.
e 0-xz=0forallzeF.
o l-x=xforall xeF.

This forces us to fill out the tables in the following manner:

+10]1]a -0 1]|a
0([0|1]a 00|00
1|1 1701
a | a a|0|a

Now if a-a =0 or a-a = a, then a (which is # 0) will not have a multiplicative inverse. So we are
forced to put a-a = 1.




Tutorial 1

MAT102H5 S2022

+10[1]a -0 1]|a
0|0|1]|a 0]0(0]0
1|1 1[0|1]|a
a | a al0|la]|l

Let us now consider what 1+ a is. If 1 + a = 1, then adding —1 on both sides, we get a = 0 which is
impossible. If 1 4+ a = a, then 1 = 0 which is impossible. Thus, we are forced to have 1+ a = 0.

+(0|1]a - 101 |a
0|0|1]|a 0]0(0]0
1|1 0 0|1]a
a|a|O0 a|l0|la]|l

Now we consider 1 +1: if 1 +1 =0, then 1 +1 =1+ a so 1 = a which is impossible; if 1 + 1 = 1 then

1 = 0 which is impossible. So we are forced to have 1 + 1 = a.

+|10]|1]a 101 |a
0|0|1]|a 0]0(0]0
1 (1|1]0 0|1]a
a|a|O0 al0|la]|l

Lastly, a + a = 0 produces a +a = a + 1 or a = 1 which is impossible; a + a = a produces a = 0 which

is impossible. So a +a = 1.
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Problem 3
Let F' be a field, and a,b € F.

1. Suppose ab = 0. Show that a =0 or b = 0.* You may use Claim 2.3.2.
2. Show that a? — b = (a +b)(a — b).

3. Suppose a® = b?. Show that a = —b or a = b.

Solution

1. To show that a = 0 or b = 0, we assume a # 0 and show that b = 0.

Suppose a # 0. Then a~! exists. Thus

ab=0

=a"*(ab) = a~1(0)
=(a"ta)b=a"1(0)

=1b=a"*(0)
=b=a"1(0)
=b=0a"1
=b=0

The proof is complete.

multiplying both sides on the left by a~!

associativity of -

a and ¢! are multiplicative inverses

1 is the multiplicative identity

commutativity of -

Claim 2.3.2: 0z = 0 for any x € F
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2. We prove a lemma:

Lemma. —x = (—1)x for all x € F. Proof.

0=0
=0 =0z Claim 2.3.2
=0=(1+-1)z —1 is the additive inverse of 1
=0=1z+ (-1)z distributivity
=0=xz+ (-1)z 1 is the multiplicative identity
=—-z4+0=—-z+(z+(-1)z) adding —z to the left of both sides
= — g =—zt(z+ 1) 0 is the additive identity
=>—z=(—z+x)+(—1zx associativity
=—z=0+(-1)z x is the additive inverse of —x

= —z = (—1)z0 is the additive identity

Now we can prove the original statement a? — b*> = (a + b)(a — b). We have

(a+0b)(a—0b) =(a+Db)a+ (a+Db)(—b) distributivity
= a® + ba + a(—b) + b(—b) distributivity
=a® +ba+a(—1)b+b(—1)b Lemma
=a® +ab+ (—1)ab + (—1)b? commutativity
=a® + ab+ (—ab) + (—b?) Lemma
=a? +(-b?) additive inverse
=a’ - b “—z” is just shorthand for “+(—2x)”
The proof is complete. O

3. If a®> = b%, then a® — b*> = 0, which by part 2 means (a + b)(a — b) = 0. By part 1, this means
either a +b =0 (so a = —b), or a —b =0 (so a = b).

%This is known as the zero-product property.

Problem 4
Define FF = R x R. We define addition + and multiplication - over F' in the following way:

o (a,b) + (¢,d) = (a+ b,c+ d) (where a+ b and ¢+ d is just addition of real numbers).

e (a,b) - (c,d) = (ac — bd, ad + bc) (where again the operations are over real numbers).

b
1. Show that F'is a field. Hint: The multiplicative inverse of (a,b) is (a2 j_ s )
2. Show that there is (a,b) € F such that (a,b) - (a,b) = —1 (where —1 is the additive inverse of the
additive identity 1 in F).

Comment. F is the complex numbers; (a,b) corresponds with a + bi. This problem asks you to show
that the complex numbers form a field.
Solution

1. We verify all the field axioms. The additive identity in F will is set to (0, 0), while the multiplicative
identity in F is set to (1,0).
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(a) If (a,b),(c,d) € R X R, then (a + b,c+ d) and (ac — bd, ad + bc) are both in R x R.

(b)
((a,0) + (¢,d)) + (e, /) = (a + b+ c,d+ e+ f) = (a,b) + (¢, d) + (e, f))-

((a,b) - (¢,d)) - (e, f) = (ac — bd, ad + be) - (e, f)

= ((ac — bd)e — (ad + be) f, (ac — bd) f + (ad + be)e)
= (ace — bde — adf — bef,acf — bdf + ade — bee),
(a,0) - ((¢,d) - (e, f)) = (a,b) - (ce — df, cf + de)

= (a(ce — df) — b(cf + de),a(cf + de) — b(ce — df))
= (

ace — adf — bef — bde, acf — ade — bee — bdf).

(a,b) + (¢,d) = (a+c,b+d) = (¢,d) + (a,b).
(a,b) - (¢,d) = (ac — bd, ad + be) = (¢,d) - (a,b).
(d) (a,b) + (0,0) = (a,b) and (a,b) - (1,0) = (a(1) — b(0),a(0) + b(1)) = (a,b), which are the
additive and multiplicative identities we have respectively defined.
(e) Given (a,b) € F, we have (—a,—b) € F, and (a,b) + (—a, —b) = (0,0).
a b
a?+ b2’ a?+b?

Given (a,b) € F, we have ( ) € F, and

a b
((l,b)' <a2+b27_a2+b2>
OO S NP S BN Y G
Y\ 2+ )%\ Tt a2 + b2

. a?+b> —ab+ab Iy a
T \aZ b2 a2+ a? + b2

—(1,0).

(a,b) - ((c,d) + (e, f))

(a,b) - (c+e,d+ f)

(alc+e)—b(d+ f),a(d+ f) +blc+e))
(ac+ ae — bd — bf,ad + af + be + be),
(a,
(
(

b) - (¢,d) + (a,b) - (e, f)
ac — bd,ad + be) + (ae — bf,af + be)
ac+ ae —bd — bf,ad + af + bc + be).

Problem 5
Suppose F' C R is a field with addition and multiplication inherited from the real numbers.®

1. Show that N C F.
2. Show that Z C F.
3. Show that Q C F.?

Solution
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Let O and 1 denote the additive and multiplicative identities of F' respectively. First, we show that
O is the real number 0. We know that O + 1p = 1z (by property of O being the additive identity).
Thus

O + (1F = 1F) =1 —1p.

b2

But notice that in “1p — 1p” we are performing subtraction of real numbers; since x — z = 0 for any
real number z, we have 1p — 1 = 0 (the real number). So

O +0=0.
In “Op + 0” we are performing real addition; since z 4+ 0 = 0 for any = € R, we get
0 = 0.

Next, we show 1p = 1. Similarly, 1z - 1p = 1p (by property of 1z being the multiplicative identity).
Thus 1 satisfies the equation of real numbers 22 = z; the only solutions to 22 = x are z = 0 or = = 1.
Thus 1p =0 or 1p = 1; since 1p # 0 = 0, we conclude 1p = 1.

1. Notice that since 1g is the real number 1, 1 € F. For any natural number n € N, we have
n=1+...+1.
———
n times

Since F' is closed under addition, 1 + ...+ 1 is in F'. This shows n € F. Thus N C F.
—_———

n times

2. Let n € Z. We split into cases.

e n > (0: then n € N, and in part 1 we've shown n € F.
en=0:0=0p€F.
en < 0: then —m > 0, so —n € F. Because F must be closed under additive inverses,
—(—n) =n € F as well.
In all cases, n € F. Thus Z C F.

3. Let % € Q, with p,q € Z,q # 0. In part 2 we've shown p,q € F. Since F is closed under

multiplicative inverses, ¢~! € F; since F is closed under multiplication, g =pglePF.

%In other words, to add or multiply any two elements a,b € F, treat a and b as real numbers.
bThis is Exercise 2.5.52 from the Course Notes.




