Problem 1

Find the range of each of the following functions.

1. $f : \mathbb{R} \to \mathbb{R}, f(x) = \frac{1}{1+2^{-x}}.$ 2. $f : \mathbb{N} \to \mathbb{Z}, f(n) = (-1)^n.$

3.
$$f: \mathbb{N} \times \mathbb{Z} \to \mathbb{R}, f(n,m) = n + m - 2.$$

Solution

- 1. $f(\mathbb{R}) = (0,1):^{a}$
 - $f(\mathbb{R}) \subseteq (0,1)$: Suppose $y \in f(\mathbb{R})$. Then there is some $x \in \mathbb{R}$ such that $y = \frac{1}{1+2^{-x}}$. Notice that y > 0 since 1 > 0 and $1 + 2^{-x} > 0$ (a ratio of two positive numbers is positive). Also, y < 1: since $2^{-x} > 0$, we have $1 + 2^{-x} > 1$, or $1 > \frac{1}{1+2^{-x}} = y$. Thus $y \in (0,1)$.
 - $(0,1) \subseteq f(\mathbb{R})$: Suppose $y \in (0,1)$. We want to find $x \in \mathbb{R}$ such that $y = \frac{1}{1+2^{-x}}$.

Rough Work

$$y = \frac{1}{1+2^{-x}}$$
$$y + 2^{-x}y = 1$$
$$2^{-x} = \frac{1-y}{y}$$
$$-x = \log_2\left(\frac{1-y}{y}\right)$$
$$x = -\log_2\left(\frac{1-y}{y}\right)$$

Let $x = -\log_2\left(\frac{1-y}{y}\right)$ (which is defined since $y \in (0,1)$ implies $y \neq 0$ and $\frac{1-y}{y} > 0$). Clearly $x \in \mathbb{R}$. We have

$$f(x) = \frac{1}{1 + 2^{\log_2\left(\frac{1-y}{y}\right)}} = \frac{1}{1 + \frac{1-y}{y}} = \frac{y}{y + 1 - y} = y.$$

Thus $y \in f(\mathbb{R})$.

- 2. $f(\mathbb{N}) = \{-1, 1\}:^{\mathbf{b}}$
 - $f(\mathbb{N}) = \{-1, 1\}$: Let $y \in f(\mathbb{N})$. Then $y = (-1)^n$ for some $n \in \mathbb{N}$. If n is even then y = 1; if n is odd then y = -1. In either case, $y \in \{-1, 1\}$.
 - $\{-1,1\} \subseteq f(\mathbb{N})$: Let $y \in \{-1,1\}$. If y = -1, then $y = (-1)^1 = f(1)$; if y = 1, then $y = (-1)^2 = f(2)$. In either case, $y \in f(\mathbb{N})$.^c

3. $f(\mathbb{N} \times \mathbb{Z}) = \mathbb{Z}$:

- $f(\mathbb{N} \times \mathbb{Z}) = \mathbb{Z}$: Let $y \in f(\mathbb{N} \times \mathbb{Z})$. Then there exists $(n, m) \in \mathbb{N} \times \mathbb{Z}$ such that y = n + m 2. So y is the sum of three integers (n, m, -2), hence $y \in \mathbb{Z}$.
- $\mathbb{Z} \subseteq f(\mathbb{N} \times \mathbb{Z})$: Let $y \in \mathbb{Z}$. Then y = 2 + y 2 = f(2, y), so $y \in f(\mathbb{N} \times \mathbb{Z})$.

- a I found this range by using a graphing calculator; on a quiz/test you may choose to use an analytical approach instead, or "brute force" to graph the function by hand.
- $^b {\rm For}$ functions like these where you may not be able to graph them, you'll just have to make an educated guess about the range.

^cNotice that in this proof, we only need to come up with *one* input $x \in \mathbb{N}$ with y = f(x), to show that $y \in f(\mathbb{N})$. Recall that $y \in f(\mathbb{N})$ if and only if there is *some* $x \in \mathbb{N}$ such that f(x) = y.

Problem 2

Let A, B, C be sets. Suppose $A \setminus C = B \setminus C$.

- 1. Give an example of sets A, B, C satisfying the above such that $A \neq B$.
- 2. Suppose furthermore that $A \cap C = B \cap C$. Show that A = B.

Solution

1. $A = \{1, 2\}, B = \{1, 3\}, C = \{2, 3\}$ gives us $A \setminus C = \{1\} = B \setminus C$ yet $A \neq B$.

- 2. $(A \subseteq B)$: suppose $x \in A$. Now either $x \in C$ or $x \notin C$. If $x \in C$, then $x \in A \cap C = B \cap C$, so $x \in B$. If $x \notin C$, then $x \in A \setminus C = B \setminus C$, so $x \in B$.
 - $(B \subseteq A)$: this is a symmetric argument.

Problem 3

Let $f: A \to B$ be a function, and $C \subseteq B$. We define the **preimage** of the set C as

 $f^{-1}(C) = \{ x \in A : f(x) \in C \}.$

(Note that " f^{-1} " should not be confused with the *inverse* of f; the inverse of f might not exist.)

- 1. Let $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$. Find $f^{-1}((1, 4])$.
- 2. Ignoring the context of the previous subquestion, suppose $C, D \subseteq B$. Show that $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.
- 3. Is it true that $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$? Give a proof or counterexample.

Solution

- 1. $f^{-1}((1,4]) = [-2,-1) \cup (1,2]$:
 - $f^{-1}((1,4]) \subseteq [-2,-1) \cup (1,2]$: Let $x \in f^{-1}((1,4])$. Then by definition, $f(x) \in (1,4]$, or $1 < x^2 \leq 4$. $1 < x^2$ gives $x \in (-\infty,-1) \cup (1,\infty)$, while $x^2 \leq 4$ gives $x \in (-2,2)$. Thus $x \in ((-\infty,-1) \cup (1,\infty)) \cap (-2,2) = [-2,-1) \cup (1,2]$.
 - $[-2,-1) \cup (1,2] \subseteq f^{-1}((1,4])$: Let $x \in [-2,-1) \cup (1,2]$. If $x \in [-2,-1)$, then $-2 \le x < -1$, so $1 < x^2 \le 4$; if $x \in (1,2]$, then $1 < x \le 2$ so $1 < x^2 \le 4$. In either case, $x^2 \in (1,4]$, so $f(x) \in (1,4]$ or $x \in f^{-1}((1,4])$.
- 2. $f^{-1}(C \cap D) \subseteq f^{-1}(C) \cap f^{-1}(D)$: Suppose $x \in f^{-1}(C \cap D)$. Then $f(x) \in C \cap D$, so $f(x) \in C$ and $f(x) \in D$, respectively giving us $x \in f^{-1}(C)$ and $x \in f^{-1}(D)$. So $x \in f^{-1}(C) \cap f^{-1}(D)$.
 - $f^{-1}(C) \cap f^{-1}(D) \subseteq f^{-1}(C \cap D)$: Reverse the previous argument.
- 3. It is true; we give a proof.

- $f^{-1}(C \cup D) \subseteq f^{-1}(C) \cup f^{-1}(D)$: Suppose $x \in f^{-1}(C \cup D)$. Then $f(x) \in C \cup D$, so $f(x) \in C$ or $f(x) \in D$, respectively giving us $x \in f^{-1}(C)$ or $x \in f^{-1}(D)$. So $x \in f^{-1}(C) \cup f^{-1}(D)$.
- $f^{-1}(C) \cup f^{-1}(D) \subseteq f^{-1}(C \cup D)$: Reverse the previous argument.