Problem 1

Determine which of the following expressions are mathematical statements. Of those that are statements, determine whether they are true or false.

- 1. $(\forall x \in \mathbb{R})(x > y)$.
- 2. $(\forall x \in \mathbb{R})(x > \pi)$.
- 3. $(\exists x \in \emptyset)(x = x)$.

4.
$$(\forall x \in \emptyset)(x = x)$$

5. $\emptyset \Leftrightarrow (\forall x \in \mathbb{R})(x \notin S)$ (where S is some predetermined set).

6.
$$(\forall x \in \mathbb{R}) (\forall y \in \mathbb{R}) (x^2 > y).$$

- 7. $(\exists x \in \mathbb{R})(\exists y \in \mathbb{R})(x^2 > y).$
- 8. $(\exists x \in \mathbb{R}) (\forall y \in \mathbb{R}) (x^2 > y).$
- 9. $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(x^2 > y).$

Solution

- 1. This is not a statement; y is not yet defined.
- 2. This is a false statement, because not all real numbers are greater than π ; for example, 0 is not greater than π .
- 3. This is a false statement; there is no $x \in \emptyset$ in the first place.
- 4. This is a vacuously true statement.
- 5. This is not a statement: \Leftrightarrow is a logical connective; both sides of \Leftrightarrow must be statements. However, " \emptyset " is not a statement, since it is not making a mathematical assertion.
- 6. This is a false statement; not all real x and y have to satisfy $x^2 > y$ (for example x = 0 and y = 1).
- 7. This is a true statement; there exist real x and y that satisfy $x^2 > y$ (such as x = 1 and y = 0).
- 8. This is a false statement; there is no x such that x^2 is greater than any real number y.
- 9. This is a true statement; given any $x \in \mathbb{R}$, we have $x^2 > -1$ for example.

Problem 2

For each valid mathematical statement in Problem 1, write out its negation.

Solution

- 2. $(\exists x \in \mathbb{R})(x \le \pi)$.
- 3. $(\forall x \in \emptyset)(x \neq x)$.
- 4. $(\exists x \in \emptyset)(x \neq x)$.
- 6. $(\exists x \in \mathbb{R})(\exists y \in \mathbb{R})(x^2 \le y).$
- 7. $(\forall x \in \mathbb{R}) (\exists y \in \mathbb{R}) (x^2 \le y).$
- 8. $(\forall x \in \mathbb{R}) (\exists y \in \mathbb{R}) (x^2 \le y).$
- 9. $(\exists x \in \mathbb{R}) (\forall y \in \mathbb{R}) (x^2 \le y).$

Problem 3

Let P, Q, R be statements. Use a truth table to show " $P \Rightarrow ((Q \land R) \lor (\neg Q \land \neg R))$ " is logically equivalent to " $\neg P \lor (Q \Leftrightarrow R)$ ".

Solution

P	Q	R	$P \Rightarrow ((Q \land R) \lor (\neg Q \land \neg R))$	$\neg P \lor (Q \Leftrightarrow R)$
F	F	F	Т	Т
F	F	Т	T	Т
F	Т	F	T	Т
F	Т	T	Т	Т
T	F	F	Т	Т
T	F	T	F	F
T	Т	F	F	F
T	T	T	Т	Т

As seen, the truth values of " $P \Rightarrow ((Q \land R) \lor (\neg Q \land \neg R))$ " and " $\neg P \lor (Q \Leftrightarrow R)$ " always match.

Problem 4

Let $f : \mathbb{R} \to \mathbb{R}$ be a function, and $c, L \in \mathbb{R}$. We say $\lim_{x \to c} f(x) = L$ if

$$(\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in \mathbb{R})(0 < |x - c| < \delta \Rightarrow |f(x) - L| < \epsilon).$$

(ϵ and δ are the Greek letters Epsilon and Delta respectively.)

1. Let f(x) = x. Show that

$$\lim_{x \to 0} f(x) = 0$$

2. Let f(x) = ax, where $a \in \mathbb{R}$ is some constant. Show that

$$\lim_{x \to 1} f(x) = a.$$

3. (Harder) Let $f(x) = x^2$. Show that

$$\lim_{x \to 2} f(x) = 4$$

Solution

1. Let $\epsilon > 0$. Set $\delta = \epsilon$ (which is > 0). Let $x \in \mathbb{R}$. Suppose $0 < |x - 0| < \delta$. Then

$$|f(x) - 0| = |x - 0| < \delta = \epsilon.$$

- 2. We split into cases.
 - a = 0: Let $\epsilon > 0$. Set $\delta = 1$ (or any positive number of your choice). Let $x \in \mathbb{R}$. Suppose $0 < |x 1| < \delta$. Then

$$|f(x) - a| = |0x - 0| = 0 < \epsilon.$$

Comment. It doesn't matter what you set δ to here, as $|f(x) - a| < \epsilon$ holds regardless.

• $a \neq 0$: Let $\epsilon > 0$. Set $\delta = \frac{1}{|a|}\epsilon$. Let $x \in \mathbb{R}$. Suppose $0 < |x-1| < \delta$. Then

$$f(x) - a| = |ax - a| = |a(x - 1)| = |a||x - 1| < |a|\delta = \epsilon.$$

3. Let $\epsilon > 0$. Set $\delta = \min\{1, \frac{\epsilon}{5}\}$ (so that $\delta \le 1$ and $\delta \le \frac{\epsilon}{5}$). Suppose $0 < |x - 2| < \delta$. Observe that $|x - 2| < \delta$ $\Rightarrow |x - 2| < 1$ $\Rightarrow -1 < x - 2 < 1$ $\Rightarrow 3 < x + 2 < 5$ $\Rightarrow -5 < x + 2 < 5$ $\Rightarrow |x + 2| < 5$. (1) Thus $|f(x) - 4| = |x^2 - 4|$ = |(x + 2)(x - 2)| = |x + 2||x - 2|< 5|x - 2| by (1)

 $< 5\delta \\ \le 5\frac{\epsilon}{5} \\ = \epsilon.$

3