Problem 1

Construct a truth table for each of the following predicates. Which of them are logically equivalent?

(a) $Q \Leftrightarrow (P \lor Q).$

(b) $P \lor \neg Q$.

(c) $Q \Rightarrow P$.

(d) $(P \lor \neg P) \land (Q \Leftrightarrow (Q \land \neg Q)).$

Problem 2

Show that the polynomial

 $p(x) = 5x^5 - 3x^3 + 1$

has no rational roots. Hint: See example 3.6.3 in the Course Notes.

Problem 3

Let $S = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}.$

1. List all subsets of S. (How many subsets are there?)

2. Determine which of the following statements are true.

•	$\emptyset \subseteq S.$	• $\{\emptyset\} \subseteq S.$
•	$\emptyset \in S.$	• $\{\emptyset\} \in S$.
•	$\emptyset \subseteq \{S\}.$	• $\{\{\emptyset\}\} \subseteq S.$
•	$\emptyset \in \{S\}.$	• $\{\{\emptyset\}\} \in S.$

Problem 4

Prove that $3^{2^n} - 1$ is divisible by 10 for all $n \in \mathbb{N}, n \ge 2$.