Tutorial 1 MAT102H5 S2022

Problem 1
Find an M € R such that
zy —y? +4 -
1:2 e y2 4 11—
for all z,y > 0.
Solution
We have, via the triangle inequality,
zy —y>+4
2+ 2 +1
2
Ty —y 4
< .
- 2+y2+1‘+ x2+y2+1’+ x2+y2+1‘
Now, to bound |———2 | notice that (x —y)? > 0 always, which gives us
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To bound | ———=——|, we have
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Finally, to bound | ——————|, we have
vt +ys+1
4 _ 4 <é:4.
2 +y?+1| 22+y2+1 "1
Combining these three bounds,
Ty —y?+4
22 fy2+1
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xy —y 4
<
- 2+y2+1’+ x2+y2+1‘+ x2+y2+1)
<l+1+4=6.

So choosing M = 6 would work.
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Problem 2
Using the triangle inequality, prove that for any z,y € R,

|z —y| > |z| - |yl

Hint: Rearrange the above inequality.
Solution
We have

lz| = [(z —y) +yl
<l|z—y|l+ |yl (triangle inequality)

and rearranging,
[z =yl < |z —yl

as needed.

Problem 3
Define the sequence (a,,) recursively:

ap =5, anpt1 =2a,+5 (for n >0).

Prove, by induction, that
an = 5- (21 - 1).

Solution
Let P(n) be the predicate “a, = 5- (2"t —1)” for n € Z,n > 0. We show P(n) is true for all n > 0
via induction.

e Base case (P(0)): we have ap =5 and 5 (2°t1 —1) =5 (2 — 1) = 5 as needed.
e Induction step: Assume that P(k) is true for some k > 0. We show P(k + 1) is true. Notice that
ap+1 = 2ap +5 (by definition of the sequence ay,)
=2(5- (21 —1)) +5 (by induction hypothesis P(k))
= e (2" — 11 4L 5
=5.(2- (2" —1)+1)
= G (@ =D 1l
= 5. (2F12 — 1).
This shows P(k + 1).

By the principle of mathematical induction, P(n) is true for all n > 0 as needed.
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Problem 4
(Ezercise 4.6.29) Let x be a nonzero real number, such that = + % is an integer. Prove that for all
n € N, the number z" + x% is also an integer.

Hint: You will need two base cases. For the induction step, consider (x + 1)(z" + 2.
Solution
Supposing z + 1 € Z, let P(n) be the predicate “z™ + & € Z” for all n € N. We show P(n) is true for
all n € N by strong induction.

e Base cases:

— P(1): z+ % is indeed an integer, by assumption in the question.
— P(2): We notice that

Since x + % € 7, so is (x + %)2 € Z. Thus z% + gg% is equal to the difference of two integers,
which shows 22 + x% €.

e Induction step: Suppose that P(1),...,P(k) are all true, for some k > 2. In particular, since
k > 2, we know that P(k) and P(k — 1) are true. We have

1 ko L k+1 k—1 1 1
<$+x>(x %k):x O et T e

1 1 1 1
k+1 k k—1
T el (I * x) (w * a:k) ; (z * xk—1> ’

The assumption in the question tells us (x <= %) € Z, while P(k) in our induction hypothesis says
that (:rk + w%) € Z, and P(k —1) in our induction hypothesis says that (x’“’l + wkl—l) € Z. Thus
a1 + Lt is the difference of two integers, which shows (2F7! + —L) € Z, completing the

induction step.

Rearranging,

Using the principle of strong mathematical induction, we have shown that P(n) holds for all n € N
as needed.
Comment. The reason why we needed two base cases is because in our induction step, we needed the
previous two induction hypothesis P(k — 1) and P(k) to prove P(k + 1). If we only had one base case,
then we would be unable to prove P(2), as that would require both P(0) and P(1), but we haven’t
proven or even defined P(0).




