Problem 1 Find an $M \in \mathbb{R}$ such that $\left|\frac{xy - y^2 + 4}{x^2 + y^2 + 1}\right| \le M$ for all x, y > 0. Solution We have, via the triangle inequality, $\left|\frac{xy-y^2+4}{x^2+y^2+1}\right|$ $\leq \left| \frac{xy}{x^2 + y^2 + 1} \right| + \left| \frac{-y^2}{x^2 + y^2 + 1} \right| + \left| \frac{4}{x^2 + y^2 + 1} \right|.$ Now, to bound $\left|\frac{xy}{x^2+y^2+1}\right|$, notice that $(x-y)^2 \ge 0$ always, which gives us $(x-y)^2 \ge 0$ $\Rightarrow x^2 - 2xy + y^2 > 0$ $\Rightarrow x^2 + y^2 > 2xy$ $\Rightarrow x^2 + y^2 > xy$ (since x, y > 0, we have 2xy > xy) $\Rightarrow x^2 + y^2 + 1 > xy$ $\Rightarrow 1 > \frac{xy}{x^2 + y^2 + 1}$ (since $x^2 + y^2 + 1 > 0$) $\Rightarrow 1 > \left| \frac{xy}{x^2 + y^2 + 1} \right|$ (since a = |a| if a > 0). To bound $\left|\frac{-y^2}{x^2+y^2+1}\right|$, we have $\left|\frac{-y^2}{x^2+y^2+1}\right| = \left|\frac{y^2}{x^2+y^2+1}\right| = \frac{y^2}{x^2+y^2+1} \le \frac{y^2}{y^2} = 1.$ Finally, to bound $\left|\frac{4}{x^2+y^2+1}\right|$, we have $\left|\frac{4}{x^2 + y^2 + 1}\right| = \frac{4}{x^2 + y^2 + 1} \le \frac{4}{1} = 4.$ Combining these three bounds, $\left|\frac{xy - y^2 + 4}{x^2 + y^2 + 1}\right|$ $\leq \left|\frac{xy}{x^2+y^2+1}\right| + \left|\frac{-y^2}{x^2+y^2+1}\right| + \left|\frac{4}{x^2+y^2+1}\right|$ <1+1+4=6So choosing M = 6 would work.

Problem 2 Using the triangle inequality, prove that for any $x, y \in \mathbb{R}$,

 $|x-y| \ge |x| - |y|.$

Hint: Rearrange the above inequality. Solution

We have

$$|x| = |(x - y) + y|$$

 $< |x - y| + |y|$

(triangle inequality)

and rearranging,

 $|x-y| \le |x-y|$

as needed.

Problem 3

Define the sequence (a_n) recursively:

$$a_0 = 5$$
, $a_{n+1} = 2a_n + 5$ (for $n \ge 0$).

Prove, by induction, that

$$a_n = 5 \cdot (2^{n+1} - 1).$$

Solution

Let P(n) be the predicate " $a_n = 5 \cdot (2^{n+1} - 1)$ " for $n \in \mathbb{Z}, n \ge 0$. We show P(n) is true for all $n \ge 0$ via induction.

- Base case (P(0)): we have $a_0 = 5$ and $5 \cdot (2^{0+1} 1) = 5 \cdot (2 1) = 5$ as needed.
- Induction step: Assume that P(k) is true for some $k \ge 0$. We show P(k+1) is true. Notice that

$$a_{k+1} = 2a_k + 5$$

= 2(5 \cdot (2^{k+1} - 1)) + 5
= 10 \cdot (2^{k+1} - 1) + 5
= 5 \cdot (2^{k+1} - 1) + 1
= 5 \cdot (2^{k+2} - 2 + 1)
= 5 \cdot (2^{k+2} - 1)

(by definition of the sequence a_n) (by induction hypothesis P(k))

This shows P(k+1).

By the principle of mathematical induction, P(n) is true for all $n \ge 0$ as needed.

Problem 4

(*Exercise 4.6.29*) Let x be a nonzero real number, such that $x + \frac{1}{x}$ is an integer. Prove that for all $n \in \mathbb{N}$, the number $x^n + \frac{1}{x^n}$ is also an integer.

Hint: You will need two base cases. For the induction step, consider $(x + \frac{1}{x})(x^n + \frac{1}{x^n})$. Solution

Supposing $x + \frac{1}{x} \in \mathbb{Z}$, let P(n) be the predicate " $x^n + \frac{1}{x^n} \in \mathbb{Z}$ " for all $n \in \mathbb{N}$. We show P(n) is true for all $n \in \mathbb{N}$ by strong induction.

- Base cases:
 - P(1): $x + \frac{1}{x}$ is indeed an integer, by assumption in the question.
 - P(2): We notice that

$$x^{2} + \frac{1}{x^{2}} = \left(x + \frac{1}{x}\right)^{2} - 2.$$

Since $x + \frac{1}{x} \in \mathbb{Z}$, so is $\left(x + \frac{1}{x}\right)^2 \in \mathbb{Z}$. Thus $x^2 + \frac{1}{x^2}$ is equal to the difference of two integers, which shows $x^2 + \frac{1}{x^2} \in \mathbb{Z}$.

• Induction step: Suppose that $P(1), \ldots, P(k)$ are all true, for some $k \ge 2$. In particular, since $k \ge 2$, we know that P(k) and P(k-1) are true. We have

$$\left(x+\frac{1}{x}\right)\left(x^{k}+\frac{1}{x^{k}}\right) = x^{k+1}+x^{k-1}+\frac{1}{x^{k-1}}+\frac{1}{x^{k+1}}$$

Rearranging,

$$x^{k+1} + \frac{1}{x^{k+1}} = \left(x + \frac{1}{x}\right)\left(x^k + \frac{1}{x^k}\right) - \left(x^{k-1} + \frac{1}{x^{k-1}}\right).$$

The assumption in the question tells us $(x + \frac{1}{x}) \in \mathbb{Z}$, while P(k) in our induction hypothesis says that $(x^{k} + \frac{1}{x^{k}}) \in \mathbb{Z}$, and P(k-1) in our induction hypothesis says that $(x^{k-1} + \frac{1}{x^{k-1}}) \in \mathbb{Z}$. Thus $x^{k+1} + \frac{1}{x^{k+1}}$ is the difference of two integers, which shows $(x^{k-1} + \frac{1}{x^{k-1}}) \in \mathbb{Z}$, completing the induction step.

Using the principle of strong mathematical induction, we have shown that P(n) holds for all $n \in \mathbb{N}$ as needed.

Comment. The reason why we needed two base cases is because in our induction step, we needed the previous two induction hypothesis P(k-1) and P(k) to prove P(k+1). If we only had one base case, then we would be unable to prove P(2), as that would require both P(0) and P(1), but we haven't proven or even defined P(0).