Problem 1

Find an $M\in\mathbb{R}$ such that

 $xy - y^2 + 4$ $x^2 + y^2 + 1$ $\leq M$

for all $x, y > 0$. Solution

We have, via the triangle inequality,

$$
\begin{aligned}\n\left| \frac{xy - y^2 + 4}{x^2 + y^2 + 1} \right| \\
\leq \left| \frac{xy}{x^2 + y^2 + 1} \right| + \left| \frac{-y^2}{x^2 + y^2 + 1} \right| + \left| \frac{4}{x^2 + y^2 + 1} \right|. \n\end{aligned}
$$

Now, to bound $\Big|$ xy $x^2 + y^2 + 1$, notice that $(x - y)^2$ ≥ 0 always, which gives us

$$
(x - y)^2 \ge 0
$$

\n
$$
\Rightarrow x^2 - 2xy + y^2 \ge 0
$$

\n
$$
\Rightarrow x^2 + y^2 \ge 2xy
$$

\n
$$
\Rightarrow x^2 + y^2 > xy
$$

\n
$$
\Rightarrow x^2 + y^2 + 1 > xy
$$

\n
$$
\Rightarrow 1 > \frac{xy}{x^2 + y^2 + 1}
$$

\n
$$
\Rightarrow 1 > \left| \frac{xy}{x^2 + y^2 + 1} \right|
$$

\n(since $x^2 + y^2 + 1 > 0$)
\n(since $a = |a|$ if $a > 0$).

To bound
$$
\left| \frac{-y^2}{x^2 + y^2 + 1} \right|
$$
, we have

$$
\left| \frac{-y^2}{x^2 + y^2 + 1} \right| = \left| \frac{y^2}{x^2 + y^2 + 1} \right| = \frac{y^2}{x^2 + y^2 + 1} \le \frac{y^2}{y^2} = 1.
$$
Finally, to bound $\left| \frac{4}{x^2 + y^2 + 1} \right|$, we have

 $\left| \overline{x^2 + y^2 + 1} \right|$

$$
\left|\frac{4}{x^2 + y^2 + 1}\right| = \frac{4}{x^2 + y^2 + 1} \le \frac{4}{1} = 4.
$$

Combining these three bounds,

$$
\begin{aligned}\n\left| \frac{xy - y^2 + 4}{x^2 + y^2 + 1} \right| \\
\leq \left| \frac{xy}{x^2 + y^2 + 1} \right| + \left| \frac{-y^2}{x^2 + y^2 + 1} \right| + \left| \frac{4}{x^2 + y^2 + 1} \right| \\
\leq 1 + 1 + 4 &= 6.\n\end{aligned}
$$

So choosing $M = 6$ would work.

Problem 2

Using the triangle inequality, prove that for any $x, y \in \mathbb{R}$,

 $|x - y| \ge |x| - |y|.$

Hint: Rearrange the above inequality. Solution We have

 $|x| = |(x - y) + y|$

 $\leq |x - y| + |y|$ (triangle inequality)

and rearranging,

 $|x-y| \leq |x-y|$

as needed.

Problem 3

Define the sequence (a_n) recursively:

$$
a_0 = 5, \quad a_{n+1} = 2a_n + 5 \text{ (for } n \ge 0).
$$

Prove, by induction, that

$$
a_n = 5 \cdot (2^{n+1} - 1).
$$

Solution

Let $P(n)$ be the predicate " $a_n = 5 \cdot (2^{n+1} - 1)$ " for $n \in \mathbb{Z}, n \ge 0$. We show $P(n)$ is true for all $n \ge 0$ via induction.

- Base case $(P(0))$: we have $a_0 = 5$ and $5 \cdot (2^{0+1} 1) = 5 \cdot (2 1) = 5$ as needed.
- Induction step: Assume that $P(k)$ is true for some $k \geq 0$. We show $P(k+1)$ is true. Notice that

 $a_{k+1} = 2a_k + 5$ (by definition of the sequence a_n) $= 2(5 \cdot (2^{k+1} - 1)) + 5$ (by induction hypothesis $P(k)$) $= 10 \cdot (2^{k+1} - 1) + 5$ $= 5 \cdot (2 \cdot (2^{k+1} - 1) + 1)$ $= 5 \cdot (2^{k+2} - 2 + 1)$ $= 5 \cdot (2^{k+2} - 1).$

This shows $P(k+1)$.

By the principle of mathematical induction, $P(n)$ is true for all $n \geq 0$ as needed.

Problem 4

(*Exercise 4.6.29*) Let x be a nonzero real number, such that $x + \frac{1}{x}$ is an integer. Prove that for all $n \in \mathbb{N}$, the number $x^n + \frac{1}{x^n}$ is also an integer.

Hint: You will need two base cases. For the induction step, consider $(x + \frac{1}{x})(x^n + \frac{1}{x^n})$. Solution

Supposing $x + \frac{1}{x} \in \mathbb{Z}$, let $P(n)$ be the predicate " $x^n + \frac{1}{x^n} \in \mathbb{Z}$ " for all $n \in \mathbb{N}$. We show $P(n)$ is true for all $n \in \mathbb{N}$ by strong induction.

- Base cases:
	- $P(1)$: $x + \frac{1}{x}$ is indeed an integer, by assumption in the question.
	- $P(2)$: We notice that

$$
x^{2} + \frac{1}{x^{2}} = \left(x + \frac{1}{x}\right)^{2} - 2.
$$

Since $x + \frac{1}{x} \in \mathbb{Z}$, so is $\left(x + \frac{1}{x}\right)^2 \in \mathbb{Z}$. Thus $x^2 + \frac{1}{x^2}$ is equal to the difference of two integers, which shows $x^2 + \frac{1}{x^2} \in \mathbb{Z}$.

• Induction step: Suppose that $P(1), \ldots, P(k)$ are all true, for some $k \geq 2$. In particular, since $k \geq 2$, we know that $P(k)$ and $P(k-1)$ are true. We have

$$
\left(x + \frac{1}{x}\right)\left(x^{k} + \frac{1}{x^{k}}\right) = x^{k+1} + x^{k-1} + \frac{1}{x^{k-1}} + \frac{1}{x^{k+1}}.
$$

Rearranging,

$$
x^{k+1} + \frac{1}{x^{k+1}} = \left(x + \frac{1}{x}\right)\left(x^k + \frac{1}{x^k}\right) - \left(x^{k-1} + \frac{1}{x^{k-1}}\right).
$$

The assumption in the question tells us $(x + \frac{1}{x}) \in \mathbb{Z}$, while $P(k)$ in our induction hypothesis says that $(x^k + \frac{1}{x^k}) \in \mathbb{Z}$, and $P(k-1)$ in our induction hypothesis says that $(x^{k-1} + \frac{1}{x^{k-1}}) \in \mathbb{Z}$. Thus $x^{k+1} + \frac{1}{x^{k+1}}$ is the difference of two integers, which shows $(x^{k-1} + \frac{1}{x^{k-1}}) \in \mathbb{Z}$, completing the induction step.

Using the principle of strong mathematical induction, we have shown that $P(n)$ holds for all $n \in \mathbb{N}$ as needed.

Comment. The reason why we needed two base cases is because in our induction step, we needed the previous two induction hypothesis $P(k-1)$ and $P(k)$ to prove $P(k+1)$. If we only had one base case, then we would be unable to prove $P(2)$, as that would require both $P(0)$ and $P(1)$, but we haven't proven or even defined $P(0)$.