
Tutorial 1 MAT102H5 S2022

Problem 1
Find an M ∈ R such that ∣∣∣∣xy − y2 + 4

x2 + y2 + 1

∣∣∣∣ ≤ M

for all x, y > 0.
Solution
We have, via the triangle inequality,∣∣∣∣xy − y2 + 4

x2 + y2 + 1

∣∣∣∣
≤
∣∣∣∣ xy

x2 + y2 + 1

∣∣∣∣+ ∣∣∣∣ −y2

x2 + y2 + 1

∣∣∣∣+ ∣∣∣∣ 4

x2 + y2 + 1

∣∣∣∣ .
Now, to bound

∣∣∣∣ xy

x2 + y2 + 1

∣∣∣∣, notice that (x− y)2 ≥ 0 always, which gives us

(x− y)2 ≥ 0

⇒x2 − 2xy + y2 ≥ 0

⇒x2 + y2 ≥ 2xy

⇒x2 + y2 > xy (since x, y > 0, we have 2xy > xy)

⇒x2 + y2 + 1 > xy

⇒1 >
xy

x2 + y2 + 1
(since x2 + y2 + 1 > 0)

⇒1 >

∣∣∣∣ xy

x2 + y2 + 1

∣∣∣∣ (since a = |a| if a > 0).

To bound

∣∣∣∣ −y2

x2 + y2 + 1

∣∣∣∣, we have

∣∣∣∣ −y2

x2 + y2 + 1

∣∣∣∣ = ∣∣∣∣ y2

x2 + y2 + 1

∣∣∣∣ = y2

x2 + y2 + 1
≤ y2

y2
= 1.

Finally, to bound

∣∣∣∣ 4

x2 + y2 + 1

∣∣∣∣, we have

∣∣∣∣ 4

x2 + y2 + 1

∣∣∣∣ = 4

x2 + y2 + 1
≤ 4

1
= 4.

Combining these three bounds,∣∣∣∣xy − y2 + 4

x2 + y2 + 1

∣∣∣∣
≤
∣∣∣∣ xy

x2 + y2 + 1

∣∣∣∣+ ∣∣∣∣ −y2

x2 + y2 + 1

∣∣∣∣+ ∣∣∣∣ 4

x2 + y2 + 1

∣∣∣∣
≤1 + 1 + 4 = 6.

So choosing M = 6 would work.
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Problem 2
Using the triangle inequality, prove that for any x, y ∈ R,

|x− y| ≥ |x| − |y|.

Hint: Rearrange the above inequality.
Solution
We have

|x| = |(x− y) + y|
≤ |x− y|+ |y| (triangle inequality)

and rearranging,
|x− y| ≤ |x− y|

as needed.

Problem 3
Define the sequence (an) recursively:

a0 = 5, an+1 = 2an + 5 (for n ≥ 0).

Prove, by induction, that
an = 5 · (2n+1 − 1).

Solution
Let P (n) be the predicate “an = 5 · (2n+1 − 1)” for n ∈ Z, n ≥ 0. We show P (n) is true for all n ≥ 0
via induction.

• Base case (P (0)): we have a0 = 5 and 5 · (20+1 − 1) = 5 · (2− 1) = 5 as needed.

• Induction step: Assume that P (k) is true for some k ≥ 0. We show P (k + 1) is true. Notice that

ak+1 = 2ak + 5 (by definition of the sequence an)

= 2(5 · (2k+1 − 1)) + 5 (by induction hypothesis P (k))

= 10 · (2k+1 − 1) + 5

= 5 · (2 · (2k+1 − 1) + 1)

= 5 · (2k+2 − 2 + 1)

= 5 · (2k+2 − 1).

This shows P (k + 1).

By the principle of mathematical induction, P (n) is true for all n ≥ 0 as needed.
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Problem 4
(Exercise 4.6.29 ) Let x be a nonzero real number, such that x + 1

x is an integer. Prove that for all
n ∈ N, the number xn + 1

xn is also an integer.
Hint: You will need two base cases. For the induction step, consider (x+ 1

x )(x
n + 1

xn ).
Solution
Supposing x+ 1

x ∈ Z, let P (n) be the predicate “xn + 1
xn ∈ Z” for all n ∈ N. We show P (n) is true for

all n ∈ N by strong induction.

• Base cases:

– P (1): x+ 1
x is indeed an integer, by assumption in the question.

– P (2): We notice that

x2 +
1

x2
=

(
x+

1

x

)2

− 2.

Since x+ 1
x ∈ Z, so is

(
x+ 1

x

)2 ∈ Z. Thus x2 + 1
x2 is equal to the difference of two integers,

which shows x2 + 1
x2 ∈ Z.

• Induction step: Suppose that P (1), . . . , P (k) are all true, for some k ≥ 2. In particular, since
k ≥ 2, we know that P (k) and P (k − 1) are true. We have(

x+
1

x

)(
xk +

1

xk

)
= xk+1 + xk−1 +

1

xk−1
+

1

xk+1
.

Rearranging,

xk+1 +
1

xk+1
=

(
x+

1

x

)(
xk +

1

xk

)
−

(
xk−1 +

1

xk−1

)
.

The assumption in the question tells us
(
x+ 1

x

)
∈ Z, while P (k) in our induction hypothesis says

that
(
xk + 1

xk

)
∈ Z, and P (k− 1) in our induction hypothesis says that

(
xk−1 + 1

xk−1

)
∈ Z. Thus

xk+1 + 1
xk+1 is the difference of two integers, which shows

(
xk−1 + 1

xk−1

)
∈ Z, completing the

induction step.

Using the principle of strong mathematical induction, we have shown that P (n) holds for all n ∈ N
as needed.
Comment. The reason why we needed two base cases is because in our induction step, we needed the
previous two induction hypothesis P (k − 1) and P (k) to prove P (k + 1). If we only had one base case,
then we would be unable to prove P (2), as that would require both P (0) and P (1), but we haven’t
proven or even defined P (0).
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