Problem 1

Decide whether the following functions are injective, surjective, bijective, or neither.

- $f: \mathbb{R} \to \mathbb{Z}, f(x) = \lfloor x \rfloor.^a$ • $f: \mathbb{Q} \to \mathbb{N} \cup \{0\}, f(\frac{p}{q}) = p^2 (\frac{p}{q} \text{ in lowest terms}).$
- $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{N} \cup \{0\}, f(x, y) = |x y|.$

•
$$f: \mathbb{N} \to \mathbb{Z} \times \mathbb{Z}, f(n) = (2n+3, 4n-2).$$

- $f: [-\frac{\pi}{2}, \frac{\pi}{2}] \to [0, 1], f(x) = \cos(x).$
- $f: \mathbb{R} \to \mathbb{R}, f(x) = |x| + x.$

Solution

- f: ℝ → ℤ, f(x) = ⌊x⌋ is not injective, as f(π) = f(3) = 3 (yet π ≠ 3). However, f is surjective, since its range f(ℝ) is equal to the codomain ℤ: for any y ∈ ℤ, we have f(y) = y, so y ∈ f(ℝ) (hence ℤ ⊆ f(ℝ)), and the other inclusion f(ℝ) ⊆ ℤ is immediate.
- $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{N} \cup \{0\}, f(x, y) = |x y|$ is not injective, as f(0, 1) = f(0, -1) = 1 (yet $(0, 1) \neq (0, -1)$). However, f is surjective: for any $z \in \mathbb{N} \cup \{0\}$, we have f(z, 0) = |z - 0| = z since z is nonnegative.
- $f: \mathbb{N} \to \mathbb{Z} \times \mathbb{Z}$, f(n) = (2n+3, 4n-2) is injective: if $m, n \in \mathbb{N}$ and $m \neq n$, then either m < n or m > n. If m < n, then 2m+3 < 2n+3 (so $2m+3 \neq 2n+3$), which means $f(m) \neq f(n)$ as their first entries differ. A similar argument holds for m > n. f is not surjective however, as (0, 1) is not in the range: 2n+3 (which is always odd) can never equal 0 (which is even).
- $f: \mathbb{Q} \to \mathbb{N} \cup \{0\}, f(\frac{p}{q}) = p^2$ ($\frac{p}{q}$ in lowest terms) is not injective, as $f(\frac{1}{2}) = f(\frac{1}{3}) = 1^2 = 1$. Nor is it surjective: 3 is not in the range, as f can only map to square numbers but 3 isn't a square number.
- $f: [-\frac{\pi}{2}, \frac{\pi}{2}] \to [0, 1], f(x) = \cos(x)$ is not injective, as $f(-\frac{\pi}{2}) = f(\frac{\pi}{2}) = 0$. f however is surjective, as for any $y \in [0, 1]$, $\operatorname{arccos}(y)$ is defined and in $[0, \frac{\pi}{2}]$, with $f(\operatorname{arccos}(y)) = y$.
- $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x| + x is not injective, as f(0) = f(-1) = 0. Neither is it surjective, as f can only map to nonnegative numbers: for $x \ge 0$ we have f(x) = x + x = 2x, while for $x \le 0$ we have f(x) = -x + x = 0. So -1 for example is not in the range.

 ${}^{a}\lfloor x \rfloor$ is the largest integer that is less than or equal to x.

Problem 2

A function $f : \mathbb{R} \to \mathbb{R}$ is *increasing* if for all $x, y \in \mathbb{R}, x < y \Rightarrow f(x) < f(y)$.

- Show that if f is increasing, then f is injective.
- Define what it means for $f : \mathbb{R} \to \mathbb{R}$ to be *decreasing*. Is it still true that if f is decreasing, then it is injective?

Solution

- Suppose f is increasing, and $x, y \in \mathbb{R}$, with $x \neq y$. Either x < y or x > y. If x < y, then f(x) < f(y) (by definition of increasing), so $f(x) \neq f(y)$ as needed. If x > y, then f(y) > f(x) so again $f(x) \neq f(y)$ as needed.
- A function $f : \mathbb{R} \to \mathbb{R}$ is *decreasing* if for all $x, y \in \mathbb{R}$, $x < y \Rightarrow f(x) > f(y)$. Indeed, any decreasing function is still injective, by modifying the proof above.

Problem 3

Suppose P(n) is a statement for all $n \in \mathbb{N}$. For each of the following induction schema, determine for which $n \in \mathbb{N}$ the schema proves P(n).

ex. P(2), and $P(k) \Rightarrow P(k+1)$ for $k \in \mathbb{N}$. This schema proves P(n) for $n \in \mathbb{N}, n \ge 2$.

- P(1), and $P(k) \Rightarrow P(k+2)$ for $k \in \mathbb{N}$.
- P(1), and $[P(k) \land P(k+1)] \Rightarrow P(k+2)$ for $k \in \mathbb{N}$.
- P(2), and $P(k) \Rightarrow P(k+2)$ for $k \in \mathbb{N}$, and $P(k) \Rightarrow P(\frac{k}{2})$ for even $k \in \mathbb{N}$.
- P(2), and $P(k) \Rightarrow P(k+5)$ for $k \in \mathbb{N}$, and $P(k) \Rightarrow P(k-3)$ for $k \in \mathbb{N}, k \ge 4$.

Solution

- This proves P(n) for odd n only.
- This proves only P(1): The rule " $[P(k) \land P(k+1)] \Rightarrow P(k+2)$ for $k \in \mathbb{N}$ " requires us to know two consecutive P(k) and P(k+1), yet we only have one (P(1)) to start off. We need more base cases!
- This proves P(n) for all $n \in \mathbb{N}$: notice that P(2) and $P(k) \Rightarrow P(k+2)$ prove P(n) for all even $n \in \mathbb{N}$. Now for odd $n \in \mathbb{N}$, since 2n is even, P(2n) is proven; applying $P(k) \Rightarrow P(\frac{k}{2})$ we have $P(2n) \Rightarrow P(n)$ so P(n) is proven as well.
- This proves P(n) for all $n \in \mathbb{N}$ too. Notice that this scheme shows $P(k) \Rightarrow P(k-1)$ for $k \geq 2$, as $P(k) \Rightarrow P(k+5) \Rightarrow P(k+2) \Rightarrow P(k-1)$. Thus, given P(2), we can prove P(1). Now using the rule P(k+5), we have P(7), P(12), P(17), and so on; using the rule $P(k) \Rightarrow P(k-1)$ we can obtain P(6), P(5), P(4), P(3) from P(7), P(11), P(10), P(9), P(8) from P(12), and so on.

Problem 4

Prove, by induction, that

$$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

for all integers $n \ge 0$. Solution Define

$$P(n): \sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

for all integers $n \ge 0$. We prove P(0), and $P(k) \Rightarrow P(k+1)$ for $k \ge 0$.

- P(0): We have $\sum_{i=0}^{0} i^2 = 0^2 = 0$, and $\frac{0(0+1)(2\cdot 0+1)}{6} = 0$.
- $P(k) \Rightarrow P(k+1)$: suppose P(k) is true, i.e.

$$\sum_{i=0}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}$$

We would like to prove P(k+1), i.e.

$$\sum_{i=0}^{k+1} i^2 = \frac{(k+1)(k+2)(2k+3)}{6}.$$

We have

$$\begin{split} \sum_{i=0}^{k+1} i^2 &= \left(\sum_{i=0}^k i^2\right) + (k+1)^2 \\ &= \frac{k(k+1)(2k+1)}{6} + (k+1)^2 & \text{(Induction hypothesis)} \\ &= \frac{k(k+1)(2k+1) + 6(k+1)^2}{6} \\ &= \frac{(k+1)[k(2k+1) + 6(k+1)]}{6} \\ &= \frac{(k+1)[2k^2 + k + 6k + 6]}{6} \\ &= \frac{(k+1)[2k^2 + 7k + 6]}{6} \\ &= \frac{(k+1)[(k+2)(2k+3)]}{6}. \end{split}$$
 which completes the proof.