Problem 1	
For each of the following, find a bijection from A to B .	
1. $A = \mathbb{N}, B = \mathbb{N} \setminus \{1, 3\}.$	3. $A = (0, \infty), B = \mathbb{R}.$
2. $A = \mathbb{N}, B = \mathbb{Z}.$	4. $A = \mathbb{R}, B = (-1, 1).$
Problem 2	
Which of the following sets are not countable?	

Thich of the following set $1. \mathbb{R} \setminus \mathbb{Q}.$

2. $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$.

- 3. $\mathcal{P}(\mathbb{N})$.
- 4. $\{f : f \text{ is a function with domain } \mathbb{N} \text{ and codomain } \mathbb{Q}\}.$

Problem 3

- Let a < b. Find a bijection from the interval [a, b] to [0, 1].
- Let c < d. Find a bijection from the interval [0, 1] to [c, d].
- Conclude that any two closed intervals have the same cardinality.

Problem 4

Compute the power set of $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$. *Hint: You may find it easier to substitute* $A = \emptyset$, $B = \{\emptyset\}$, $C = \{\emptyset, \{\emptyset\}\}$ before you start.

Problem 5

Let S be a set. Show that there is an injection from S to $\mathcal{P}(S)$.

Problem 6

Let U be the "set of all sets". Show that U cannot exist, using Cantor's theorem (|S| < |P(S)| for any set S). *Hint: If* U were a set, then what is P(U)?