Problem 1 For each of the following, find a bijection from A to B .	
1. $A = \mathbb{N}, B = \mathbb{N} \setminus \{1, 3\}.$	3. $A = (0, \infty), B = \mathbb{R}.$
2. $A = \mathbb{N}, B = \mathbb{Z}.$	4. $A = \mathbb{R}, B = (-1, 1).$
Solution	
1. $f : \mathbb{N} \to \mathbb{N} \setminus \{1, 3\}, f(n) = \begin{cases} 2 & n = 1 \\ n+2 & n > 1. \end{cases}$	
2. $f: \mathbb{N} \to \mathbb{Z}, f(n) = \begin{cases} 0 & n = 1 \\ \frac{n}{2} & n > 1, n \text{ is even} \\ -\frac{n-1}{2} & n > 1, n \text{ is odd.} \end{cases}$	
3. $f: (0,\infty) \to \mathbb{R}, f(x) = \ln(x).$	

Problem 2

Which of the following sets are not countable?

4. $f: \mathbb{R} \to (-1, 1), f(x) = \frac{1}{\pi} \arctan(x) + \frac{1}{2}$

- 1. $\mathbb{R} \setminus \mathbb{Q}$.
- 2. $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$.
- 3. $\mathcal{P}(\mathbb{N})$.
- 4. $\{f : f \text{ is a function with domain } \mathbb{N} \text{ and codomain } \mathbb{Q}\}.$

Solution

- 1. $\mathbb{R} \setminus \mathbb{Q}$ is not countable: for the sake of contradiction, suppose $\mathbb{R} \setminus \mathbb{Q}$ were countable instead. We have $\mathbb{R} = \mathbb{Q} \setminus (\mathbb{R} \setminus \mathbb{Q})$, so \mathbb{R} is the union of two disjoint countable sets \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$. This implies \mathbb{R} is countable, contrary to the fact that \mathbb{R} is uncountable.
- 2. $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$ is countable: the Cartesian product of any two countable sets is countable, so $\mathbb{Q} \times \mathbb{Q}$ is countable. Now $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$ can be written as $(\mathbb{Q} \times \mathbb{Q}) \times \mathbb{Q}^a$ which is again the Cartesian product of two countable sets, hence countable.
- 3. $\mathcal{P}(\mathbb{N})$ is uncountable by Cantor's theorem: $|\mathcal{P}(\mathbb{N})| > |\mathbb{N}|$ (and a set is countable iff its cardinality is equal to that of \mathbb{N}).
- 4. $\{f : f \text{ is a function with domain } \mathbb{N} \text{ and codomain } \mathbb{Q}\}$ is not countable.^b We use a diagonal argument.

Suppose the set of functions from \mathbb{N} to \mathbb{Q} were countable. Then we can list *all* such functions f_1, f_2, f_3, \ldots We will construct a function $g : \mathbb{N} \to \mathbb{Q}$ that is different from all the f_i 's, which shows our enumeration is incomplete contrary to the fact that we just listed all such functions. Define

$$g: \mathbb{N} \to \mathbb{Q}, g(n) = \begin{cases} 0 & f_n(n) \neq 0\\ 1 & f_n(n) = 0. \end{cases}$$

Notice that $g \neq f_n$ for any $n \in \mathbb{N}$, as we have chosen g(n) so that $g(n) \neq f_n(n)$ (and two functions differ iff there is some input on which their output differs). Thus g is not in the list f_1, f_2, f_3, \ldots , which produces the contradiction we needed.

^aStrictly speaking $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$ is *defined* to be $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$, as we have technically not defined what a triple Cartesian product is.

^bEach individual function $f : \mathbb{N} \to \mathbb{Q}$ is countable (when functions are considered subsets of $\mathbb{N} \times \mathbb{Q}$). However, the collection of such functions is uncountable.

Problem 3

- Let a < b. Find a bijection from the interval [a, b] to [0, 1].
- Let c < d. Find a bijection from the interval [0, 1] to [c, d].
- Conclude that any two closed intervals have the same cardinality.

Solution

• I will use a linear function f(x) = mx + c with endpoints f(a) = 0 and f(b) = 1. This gives us the system of equations

$$f(a) = ma + c = 0 \tag{1}$$

$$f(b) = mb + c = 1.$$
 (2)

(2) gives
$$c = 1 - mb$$
. Substituting into (1),

$$ma + 1 - mb = 0 \Rightarrow m(a - b) = -1 \Rightarrow m = \frac{1}{b - a}$$

Using this value of m in (1),

$$\frac{1}{b-a}a + c = 0 \Rightarrow c = -\frac{a}{b-a}.$$

Thus our bijection should be

$$f: [a,b] \to [0,1], f(x) = \frac{1}{b-a}x - \frac{a}{b-a}.$$

Indeed, f is a bijection: f is injective since it is monotone increasing, and f is surjective as for any $y \in [0, 1]$, if we set x = (b - a)y + a, we have (since b - a > 0)

$$0 \le y \le 1 \Rightarrow 0 \le (b-a)y \le b-a \Rightarrow a \le (b-a)y + a \le b \Rightarrow a \le x \le b$$

so x is in the domain, and

$$f(x) = \frac{1}{b-a}((b-a)y+a) - \frac{a}{b-a} = y + \frac{a}{b-a} - \frac{a}{b-a} = y$$

• I will again use a linear function f(x) = mx + b, and map f(0) = c, f(1) = d. Notice

$$f(0) = m \cdot 0 + b = b$$

and since f(0) = c, we have b = c. Now

$$f(1) = m \cdot 1 + b = m + c$$

and since f(1) = d, we have m = d - c. Thus our bijection should be

$$f: [0,1] \to [c,d], f(x) = (d-c)x + c.$$

The proof that f is a bijection is similar.

• Any two closed intervals [a, b] and [c, d] satisfy |[a, b]| = |[0, 1]| = |[c, d]|, using (a).

Problem 4

Compute the power set of $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$. *Hint: You may find it easier to substitute* $A = \emptyset$, $B = \{\emptyset\}$, $C = \{\emptyset, \{\emptyset\}\}$ before you start.

Solution

As the hint suggests, let $A = \emptyset$, $B = \{\emptyset\}$, $C = \{\emptyset, \{\emptyset\}\}$. Then we are just computing the power set of $\{A, B, C\}$, which is

 $\{\emptyset, \{A\}, \{B\}, \{C\}, \{A, B\}, \{A, C\}, \{B, C\}, \{A, B, C\}\}.$

Substituting back, the power set should be

 $\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\{\emptyset, \{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset, \{\emptyset\}\}\}, \{\{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}.$

Problem 5

Let S be a set. Show that there is an injection from S to $\mathcal{P}(S)$. Solution Let $f: S \to \mathcal{P}(S)$ be defined as $f(s) = \{s\}$ for all $s \in S$. Notice that f is an injection: if $s, t \in S$ and $s \neq t$, then $\{s\} \neq \{t\}$.

Problem 6

Let U be the "set of all sets". Show that U cannot exist, using Cantor's theorem (|S| < |P(S)| for any set S). *Hint: If* U were a set, then what is $\mathcal{P}(U)$?

Solution

Suppose U were a set. We claim $P(U) \subseteq U$. Indeed, for any $x \in P(U)$, by definition x is a subset of U. Hence x is a set, and since U is the "set of all sets" we have $x \in U$. Now since $P(U) \subseteq U$, there is an injection from P(U) to U (just map everything in P(U) to itself). Thus $|P(U)| \leq |U|$, contradicting Cantor's theorem.