

3.
$$
f:(0,\infty) \to \mathbb{R}
$$
, $f(x) = \ln(x)$.

4.
$$
f : \mathbb{R} \to (-1, 1), f(x) = \frac{1}{\pi} \arctan(x) + \frac{1}{2}
$$

Problem 2

Which of the following sets are not countable?

- 1. $\mathbb{R} \setminus \mathbb{Q}$.
- 2. $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$.
- 3. $\mathcal{P}(\mathbb{N}).$

4. $\{f : f$ is a function with domain N and codomain $\mathbb{Q}\}$.

Solution

- 1. $\mathbb{R} \setminus \mathbb{Q}$ is not countable: for the sake of contradiction, suppose $\mathbb{R} \setminus \mathbb{Q}$ were countable instead. We have $\mathbb{R} = \mathbb{Q} \setminus (\mathbb{R} \setminus \mathbb{Q})$, so \mathbb{R} is the union of two disjoint countable sets \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$. This implies $\mathbb R$ is countable, contrary to the fact that $\mathbb R$ is uncountable.
- 2. $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$ is countable: the Cartesian product of any two countable sets is countable, so $\mathbb{Q} \times \mathbb{Q}$ is count[a](#page-1-0)ble. Now $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$ can be written as $(\mathbb{Q} \times \mathbb{Q}) \times \mathbb{Q}^a$ which is again the Cartesian product of two countable sets, hence countable.
- 3. $\mathcal{P}(\mathbb{N})$ is uncountable by Cantor's theorem: $|\mathcal{P}(\mathbb{N})| > |\mathbb{N}|$ (and a set is countable iff its cardinality is equal to that of \mathbb{N}).
- 4. $\{f : f$ is a function with domain N and codomain Q is not counta[b](#page-1-1)le.^b We use a diagonal argument.

Suppose the set of functions from $\mathbb N$ to $\mathbb Q$ were countable. Then we can list all such functions f_1, f_2, f_3, \ldots We will construct a function $g : \mathbb{N} \to \mathbb{Q}$ that is different from all the f_i 's, which shows our enumeration is incomplete contrary to the fact that we just listed all such functions.

Define

$$
g: \mathbb{N} \to \mathbb{Q}, g(n) = \begin{cases} 0 & f_n(n) \neq 0 \\ 1 & f_n(n) = 0. \end{cases}
$$

Notice that $g \neq f_n$ for any $n \in \mathbb{N}$, as we have chosen $g(n)$ so that $g(n) \neq f_n(n)$ (and two functions differ iff there is some input on which their output differs). Thus g is not in the list f_1, f_2, f_3, \ldots , which produces the contradiction we needed.

^aStrictly speaking $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$ is defined to be $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$, as we have technically not defined what a triple Cartesian product is.

bEach individual function $f : \mathbb{N} \to \mathbb{Q}$ is countable (when functions are considered subsets of $\mathbb{N} \times \mathbb{Q}$). However, the collection of such functions is uncountable.

Problem 3

- Let $a < b$. Find a bijection from the interval $[a, b]$ to $[0, 1]$.
- Let $c < d$. Find a bijection from the interval $[0, 1]$ to $[c, d]$.
- Conclude that any two closed intervals have the same cardinality.

Solution

• I will use a linear function $f(x) = mx + c$ with endpoints $f(a) = 0$ and $f(b) = 1$. This gives us the system of equations

$$
f(a) = ma + c = 0 \tag{1}
$$

$$
f(b) = mb + c = 1.
$$
\n⁽²⁾

(2) gives
$$
c = 1 - mb
$$
. Substituting into (1),

$$
ma + 1 - mb = 0 \Rightarrow m(a - b) = -1 \Rightarrow m = \frac{1}{b - a}.
$$

Using this value of m in (1) ,

$$
\frac{1}{b-a}a+c=0 \Rightarrow c=-\frac{a}{b-a}.
$$

Thus our bijection should be

$$
f : [a, b] \to [0, 1], f(x) = \frac{1}{b-a}x - \frac{a}{b-a}.
$$

Indeed, f is a bijection: f is injective since it is monotone increasing, and f is surjective as for any $y \in [0, 1]$, if we set $x = (b - a)y + a$, we have (since $b - a > 0$)

$$
0\leq y\leq 1\Rightarrow 0\leq (b-a)y\leq b-a\Rightarrow a\leq (b-a)y+a\leq b\Rightarrow a\leq x\leq b
$$

so x is in the domain, and

$$
f(x) = \frac{1}{b-a}((b-a)y+a) - \frac{a}{b-a} = y + \frac{a}{b-a} - \frac{a}{b-a} = y.
$$

• I will again use a linear function $f(x) = mx + b$, and map $f(0) = c$, $f(1) = d$. Notice

$$
f(0) = m \cdot 0 + b = b
$$

and since $f(0) = c$, we have $b = c$. Now

$$
f(1) = m \cdot 1 + b = m + c
$$

and since $f(1) = d$, we have $m = d - c$. Thus our bijection should be

$$
f:[0,1] \to [c,d], f(x) = (d-c)x + c.
$$

The proof that f is a bijection is similar.

• Any two closed intervals [a, b] and [c, d] satisfy $|[a, b]| = |[0, 1]| = |[c, d]|$, using (a).

Problem 4

Compute the power set of $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\$. Hint: You may find it easier to substitute $A = \emptyset$, $B = \{\emptyset\}\$, $C = \{\emptyset, \{\emptyset\}\}\$ before you start.

Solution

As the hint suggests, let $A = \emptyset$, $B = \{\emptyset\}$, $C = \{\emptyset, \{\emptyset\}\}\$. Then we are just computing the power set of ${A, B, C}$, which is

 $\{\emptyset, \{A\}, \{B\}, \{C\}, \{A, B\}, \{A, C\}, \{B, C\}, \{A, B, C\}\}.$

Substituting back, the power set should be

 $\{\emptyset, \{\emptyset\}, \{\{\emptyset, \{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \{\{\emptyset, \{\emptyset\}\}\}, \{\{\emptyset, \{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}.$

Problem 5

Let S be a set. Show that there is an injection from S to $\mathcal{P}(S)$. Solution Let $f: S \to \mathcal{P}(S)$ be defined as $f(s) = \{s\}$ for all $s \in S$. Notice that f is an injection: if $s, t \in S$ and $s \neq t$, then $\{s\} \neq \{t\}.$

Problem 6

Let U be the "set of all sets". Show that U cannot exist, using Cantor's theorem $(|S| < |P(S)|$ for any set S). Hint: If U were a set, then what is $\mathcal{P}(U)$?

Solution

Suppose U were a set. We claim $P(U) \subseteq U$. Indeed, for any $x \in P(U)$, by definition x is a subset of U. Hence x is a set, and since U is the "set of all sets" we have $x \in U$. Now since $P(U) \subseteq U$, there is an injection from $P(U)$ to U (just map everything in $P(U)$ to itself). Thus $|P(U)| \leq |U|$, contradicting Cantor's theorem.