MAT157 TUT9101

Welcome!

Info

Name: Paul Zhang

Email: pol.zhang@utoronto.ca

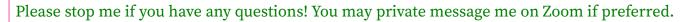
Office Hours: Wed 6-7pm, same room

Website (tutorial handouts will be posted here probably): sjorv.github.io

Discord: sjorv#0943

Interests: eating, pillow hugging, gaming, reading (text)books

Favourite food: sushi probably.



For each of the following statements, translate it into logical symbols. Try to also figure out whether the statements are true or false.

- 1. For every real number, there exists a real number such that their product is 1.
- 2. For every natural number, there exists a natural number greater than it.
 3. If the product of two integers is zero, one of them must be zero.
- 4. There is an integer that is its own square, and is not one or zero.
- 5. For any real numbers a, b, if a b is negative, then a must be greater than b.
- 6. An integer that is a perfect square and even must be divisible by 4.

(1)
$$(\forall x \in \mathbb{R})(\exists y \in \mathbb{R}) [x \cdot y = 1]$$
 Take (if $x \sim 0$, $\exists y \in \mathbb{R}$ s.t. $x \cdot y = 1$).

(2) $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R}) [y > x]$. True (for any $x \in \mathbb{R}$, if $y = x + 1$, then $y > x$).

(3) $(\forall x \in \mathbb{Z})(\forall y \in \mathbb{Z}) [x \cdot y = 0 \Rightarrow (x = 0) \lor (y = 0)]$ True ($z \in \mathbb{Z}$) $z \in \mathbb{Z}$ $z \in \mathbb{Z}$) $z \in \mathbb{Z}$ $z \in \mathbb{Z}$ $z \in \mathbb{Z}$ $z \in \mathbb{Z}$ $z \in \mathbb{Z}$.

(5) $(\forall a \in \mathbb{R})(\forall b \in \mathbb{R})$ $[a - b < 0 \Rightarrow a > b]$. Take.

Problem 2 For each of the following logic formulas, write down its negation in symbols. Determine whether it is true or its negation is true. 1. $(\forall n \in \mathbb{N})(\exists m \in \mathbb{N})[m > n]$. 2. $(\exists m \in \mathbb{N})(\forall n \in \mathbb{N})[m > n]$. 3. $(\exists n \in \mathbb{N})(\forall m \in \mathbb{N})[m = 2n \Rightarrow (\forall \ell \in \mathbb{N})(m \neq 2\ell + 1)].$ 4. $(\forall q \in \mathbb{Q})(\exists m \in \mathbb{N})(\exists n \in \mathbb{N})[q = m/n]$. 5. $(\exists r \in \mathbb{Q})(\forall s \in \mathbb{Q})[s^2 \le 2 \Rightarrow r \ge s]$. 6. $(\exists \epsilon > 0)(\forall \delta > 0)(\forall x \in \mathbb{R})[0 < |x - 2| < \epsilon \Rightarrow |3x - 6| < \delta]$. 7. $(\exists \epsilon > 0)(\forall \delta > 0)(\forall x \in \mathbb{R})[0 < |x - 2| < \epsilon \Rightarrow 0 < 2]$. $^{a}\epsilon$ and δ are the Greek letters Epsilon and Delta respectively. These two letters will reappear throughout the course and haunt you in your dreams. (Juen) (MEM) [men]. is not (JakA) P(a) True (see problem 1, part 2) (2) 7 [] MEN) (YNEN) [mon] False (take m=n) () (V MEN) (] NEN) [MEN (3) ~ (InEN) [4MEN) [m=)n => (4le14) (m+2l+1)] $\neg (P \Rightarrow Q) \Leftrightarrow P \land \neg Q$ (CYNEN) (JMEN) [m=2n 1 (JLEN) (m=21+1) The if m=2n than m is even (Ylen) M = 21+1 (4)7(4gEQ) (3mEN) (9:M) () () gea) (AMEN) (ANEN) [q + m] Fale if q= - | then Ymn EN m/ >0 50 m/ fg. (5) 7(],(Q)(Aska) [3:2=)+25] ((Yrea) (JSEQ) [32) A res] True. If r=] for any sed if s2:2 than - 52:5 = 50 so ser. * this is herd! we will feach this later. (6)-(3 E>0)(48>0)(48x4)[0<|x-2|<6=> |3x-6|<6] (∀€70) (∃570) (∃516R) [0< |2-2|18 1 |32-6|25] |32-6|25</p>

False. for any $\xi > 0$, if $\zeta = \frac{\xi}{6}$, choosing $\chi : 2 + \frac{\xi}{3}$

13 (2-21) 25

 $0 \le |x-2| \le \frac{3|x-2|}{5}$ $|x-2| \le \frac{3|x-2|}{5}$ $|x-2| \ge \frac{3}{5}$

$$+$$
 (4 re ϕ) $b(y)$

Problem 3

Show that the following are equivalent, no matter the truth values of P and Q, by enumerating through all four combinations of truth values of P and Q and computing the truth value on both sides of \Leftrightarrow :

1.
$$(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$$
.

2.
$$(P \Rightarrow Q) \Leftrightarrow (\neg Q \Rightarrow \neg P)$$
.

(1)	P	9	P⇒Q	7PVQ	(2)	P	Q	P>O	70=)79
		7)	_	- /	Τ	て	T	\top
	7	Ť	F	Ţ-		(7-	F	F
	Ē	7	_	T		(τ	٦	一
	<u>F</u>	7	T	Ī		F	F	7	
			·						

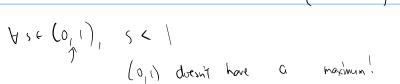
Problem 4

For each of the following, give a definition in symbols.

- 1. The integer n is divisible by the integer m.
- 2. The real number r is rational.
- 3. The integer d is the greatest common divisor of the integers m and n.
- 4. The set S has a maximum.

(3)
$$q \mid u \vee q \mid u \vee (A \times \epsilon S) [x > q \Rightarrow J(x \mid u) \wedge J(x \mid u)]$$

for any integer x that is greater than d, Ic can't d'ivi de both in and in



Problem 5

Let A, B, C be contained in some universe of discourse U. Prove the following statements:

- 1. If $A \subseteq B$ then $B^C \subseteq A^C$.
- 2. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- 3. $(A^C)^C = A$.
- $4. \ A \setminus B = A \cap B^C.$

(3) We prove
$$(A^c)^c \subseteq A$$
 and $A \subseteq (A^c)^c$.

Let $x \in (A^c)^c$.

Then $\neg (x \in A^c)$ or $\neg (\neg x \in A)$

So $x \in A$. Thenfore $(A^c)^c \subseteq A$.

Let $x \in A$.

Then $\neg (\neg x \in A)$. So $\neg (\neg x \in A^c)$ or $\neg (\neg x \in A^c)^c$.

Therefore $A \subseteq (A^c)^c$.

Problem 6

Answer the following questions. Give a brief argument for your answer:

- 1. If A and B are finite sets, what is $|A \times B|$?
- 2. If A and B are countable sets, is $A \times B$ countable? If it's true in general, explain why. If it's not, come up with countable A and B so that $A \times B$ is not countable.
- 3. If A and B are finite sets, and \mathcal{F} is the set of all functions $A \to B$, what is $|\mathcal{F}|$?
- 4. If $J_n = \{1, 2, 3, ..., n\}$ and \mathcal{G} is the set of all bijective functions $J_n \to J_n$, what is $|\mathcal{G}|$?
- 5. Define $\mathcal{N} = \{S \subseteq \mathbb{N} : S \text{ is finite}\}$. In other words, \mathcal{N} is the set of finite subsets of \mathbb{N} . Is \mathcal{N} countable? Can you construct an injection from \mathcal{N} into \mathbb{N} ?

(a,b)=(c,d) = a2c and b=d

(1)
$$(A \times B) = \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x \in A , y \in B^{2}$$

$$= \mathcal{L}(x,y) : x$$

$$\beta = \emptyset \ b_1 \ b_2 \ \cdots$$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_2 \ \cdots$
 $\beta = \emptyset \ b_1 \ b_2 \ \cdots$
 $\beta = \emptyset \ b_2 \ \cdots$

(3)
$$A = 2 |_{12} |_{33}$$
 $B = 2 |_{12} |_{33}$
 $f_{1}, f_{2}, ..., f_{6}, f_{7}, f_{8} : A = B$
 $f_{1}(1) = 1, f_{12} = 1, f_{13} = 1,$
 $f_{2}(1) = 1, f_{2}(2) = 1, f_{2}(3) = 2$
 $f_{3}(1) = 1, f_{3}(2) = 2, f_{3}(3) = 1$
 \vdots
 $f_{8}(1) = 2, f_{8}(2) = 2, f_{8}(3) = 2.$

| set of functions from
$$A \rightarrow B = |B|^{|A|}$$

(4) a permutation is a bijection from a set to itself.
Here are $n!$ permutations of $2!,...,n$.

"f-1" only makes sense if f is invertible.

i can use "the" instead of "an" because the inverse is unique, as i am about to prove:

Suppose
$$g_1g': B > A$$
 are such that

fog = id_p = fog', $g \circ f = id_A = g' \circ f$.

We show $g = g'$.