MAT157 TUT11

(probably start at 10:15 today, just to give you a proper 10 minute break)Let $f: I \to \mathbb{R}$ be C^n , and $a \in I$. We define the *n*-th order Taylor polynomial of f at a as the polynomial $p_{n,a}^f(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k.$ If the context is clear, we may write $p_{n,a}(x)$ instead of $p_{n,a}^f(x)$. We also defined the "remainder" $r_{n,a}^f(x)$ (or $r_{n,a}(x)$) of the Taylor polynomial, which is the difference between f and its n-th order Taylor poly approximation at α : $r_{n,a}^f(x) = f(x) - p_{n,a}^f(x).$ We have proven a few facts about polynoimal approximations in class: (i) $p_{n,a}(x)$ is a good n-th order approximation of f at a. That is, $\lim_{x \to a} \frac{r_{n,a}(x)}{(x-a)^n} \left(= \lim_{x \to a} \frac{f(x) - p_{n,a}(x)}{(x-a)^n} \right) = 0.$ In fact, it is the only n-th order polynomial that is a good n-th order approximation of f at a . (ii) $(r_{n,a})^{(k)}(a) = 0$ for $k = 0, 1, \ldots, n$. As $r_{n,a}(x) = f(x) - p_{n,a}(x)$, this can also be written $(p_{n,a})^{(k)}(a) = f^{(k)}(a).$ (iii) If f is also C^{n+1} , then for $x > a$, there exists some $c \in (a, x)$ such that $r_{n,a}(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$ For $x < a$, there exists some $c \in (x, a)$ such that the above equation holds. Problem 1 Suppose p is a good *n*-th order approximation of f at a : $|0.22|$ $\lim_{x \to a} \frac{f(x) - p(x)}{(x - a)^n} = 0.$ Show that p is a good k-th order approximation of f at a for all $k = 0, 1, ..., n - 1$ as well $\lim_{\lambda \to a} \frac{f(a) - f(\lambda)}{(x-a)^k} = \lim_{\lambda \to a} \frac{f(\lambda) - f(\lambda)}{(x-a)^n} \qquad (x-a)^{n-k}$ $\frac{1}{2}$ $\frac{f(x)-p(x)}{x-a(x-a)}$ $\frac{f(x)}{x-a}$ $\frac{f(x)}{x-a}$ $= 6 - 0.000$ Problem 2 1. Find the *n*-th order Taylor polynomial approximation of cos at $a = 0$. 2. Using fact (iii), find a large enough n so that the nth-order Taylor polynomial of cos at $a = 0$ approximates cos(1) with an error of less than 10^{-3} . That is, find an n so that $|r_{n,a}(1)| \leq 10^{-3}$. 3. Calculate $cos(1)$ correct to 3 decimal places. \mathbb{L} $(\cos(\theta)) = 1$ $\int_{0}^{1} f(x) dx$ $cos'(0) = -sin(s) = 0$ $0 \le 4n + 1$ $cos^{20}(a) = -cos(a) = -1$ -1 $k = 4n12$ $cos^{(3)} (0) = sin(3) = 0$ $k = 4.13$ \overline{O} $cos^{(\psi)}(\zeta) = cos(\zeta) - 1$ $p_{n,a}^f(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k.$ $\frac{C_{00}(0)}{0!}$ + $\frac{C_{00}(0)}{1!}$ + $\frac{C_{00}(0)}{1!}$ + $\frac{C_{00}(0)}{1!}$ (x) $\frac{2}{1!}$ + ... + $\frac{C_{00}(0)}{n!}$ (x) $1 - \frac{1}{2}t^2 + \frac{1}{4!}t^2 - \frac{1}{6!}t^6 + ... + \frac{(\omega^{(n)}(0)}{n!}t^6$

2. Using fact (iii), find a large enough n so that the nth-order Taylor polynomial of cos at $a = 0$ approximates $cos(1)$ with an error of less than 10^{-3} . That is, find an n so that

 $|r_{n,q}(1)| \leq 10^{-3}$. Try to do the following problem with as little aid from calculators as possible. You may find the following calculations useful $2^2 = 4, 2^3 = 8, 2^4 = 16, 2^5 = 32, 2^6 = 64, 2^7 = 128, 2^8 = 256, 2^9 = 512, 2^{10} = 1024.$ $3^2 = 9, 3^3 = 27, 3^4 = 81, 3^5 = 243, 3^6 = 729, 3^7 = 2187, 3^8 = 6561.$ $2! = 2, 3! = 6, 4! = 24, 5! = 120, 6! = 720, 7! = 5040, 8! = 40320.$ (iii) If f is also C^{n+1} , then for $x > a$, there exists some $c \in (a, x)$ such that $\zeta(s)(x) - \ln_{p}(x)$ $\qquad n \leq \frac{r_{n,a}(x)}{(n+1)!}(x-a)^{n+1}.$ For $x < a$, there exists some $c \in (x, a)$ such that the above equation holds. $\left| f_{A,A}(1) \right| = \frac{|cos^{(n+1)}(c)|}{(n+1)!} |1|^{n+1}$ from some CE (a, λ) . $\frac{2}{(b+1)!}$ $\frac{1}{(b+1)!}$ $\frac{1}{(b+1)!$ $\frac{1}{100}$ (0) $\frac{1}{100}$ (0) $\frac{1}{100}$ (0) $\frac{1}{100}$ 3. Calculate $cos(1)$ correct to 3 decimal places. $10 - 46$ $\frac{\rho_{6,0}(x)}{\rho_{1,0}(x)} = \frac{1 - \frac{x^2}{2} + \frac{x^4}{4}}{\rho_{1,0}} = \frac{x^6}{6!}$ $\frac{1}{\beta_{6,0}(1)}$ - $\frac{1}{2}$ + $\frac{1}{2\pi}$ - $\frac{1}{220}$ $= 220-360+30=1$
 $= 389$ 389/720 0.540277777778 cos(1). 0.54030230587 Let $x \in \mathbb{R}$. We defined the **open ball of radius** r **around** x, $B_r(x)$, as the set $(x - r, x + r)$. Given a set $U \subseteq \mathbb{R}$, and a point $a \in \mathbb{R}$, we say: • *a* is an **interior point** of *U* if there exists $r > 0$ so that $B_r(a) \subseteq U$. • *a* is a **boundary point** of *U* if for every $r > 0$, we have $B_r(\phi) \cap U \neq \emptyset$ and $B_r(\phi) \cap U^c \neq \emptyset$. The set of interior points of U is denoted U^{int} , and the set of boundary points of U is denoted ∂U . Problem 3 Find examples of sets $U \subseteq \mathbb{R}$ which: 1. Have no interior points, but have boundary points. \int 2. Have no boundary points. R ϕ 3. Have countably infinitely many boundary points. N, α 4. Have uncountably infinitely many boundary points, and countably infinitely many interior points. the such set exists

Problem 4
\n**Problem 4**
\n
$$
\frac{64x}{10x^2-10x^3}
$$
\n
$$
\frac{64x^3}{10x^2-10x^3}
$$
\n
$$
\frac{64x^2}{10x^2-10x^3}
$$
\n
$$
\frac{64x^2}{10x^2-10x^3}
$$
\n
$$
\frac{64x^2}{10x^2-10x^3}
$$
\n
$$
\frac{1}{10x^2-10x^2}
$$
\n
$$
\frac{1}{10x^2-10x}
$$
\n
$$
\frac{1}{10x^2
$$

The
$$
\int_{0}^{2\pi} e^{-\int_{0}^{2\pi} e^{-\int_{0}^{
$$