MAT157 TUT11

polynomial

(probably start at 10:15 today, just to give you a proper 10 minute break)

Let f: I — R be C", and a € I. We define the n-th order Taylor polynomial of f at a as the
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approximation at a

If the context is clear, we may write p,, o (2) instead of p/, , (). We also defined the “remainder

) of the Taylor polynomial, which is the difference between f and its n-th order Taylor polynomial
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We have proven a few facts about polynomml approximations in class

) is a good n-th order approximation of f at a. That is
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In fact, it is the only n-th order polynomial that is a good n-th order approximation of f at a.
(i) (rna)® (a) =0 for k
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(), this can also be written

(Pn‘n)(k)(a) =/®(a)

(iii) If f is also C"*!, then for z > a, there exists some ¢ € (a, ) such that
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Problem 1

For x < a, there exists some ¢ € (x,a) such that the above equation holds.

Suppose p is a good n-th order approximation of f at a

o1t
lim (8 = 2(@) (’ @) _
csa (z—a)t
Show that p is a good k-th order approximation of f at a for all k =0,1,...,n — 1 as well.
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Problem 2
1. Find the n-th order Taylor polynomial approximation of cos at a = 0.
2. Using fact (iii), find a large enough n so that the nth-order Taylor polynomial of cos at a = 0
approximates cos(1) with an error of less than 1073. That is, find an n so that

|Pra(1)] < 1073,

3. Calculate cos(1) correct to 3 decimal places.
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2. Using fact (iii), find a large enough n so that the nth-order Taylor polynomial of cos at a = 0

approximates cos(1) with an error of less than 10~2. That is, find an n so that

|7n.a(1)] < 1073,

Try to do the following problem with as little aid from calculators as possible. You may find the following
calculations useful:

22 = 4,2% =821 =16,2° = 32,20 = 64,27 = 128, 2% = 256,2° = 512,2'0 = 1024.

32 =9,3% = 27,3" = 81,3% = 243,3° = 729,37 = 2187, 3% = 6561.

21 =28 = 6,41 = 24,5! = 120, 6! = 720, 7! = 5040, 8! = 40320.

(ili) If f is also C"*1, then for x > a, there exists some ¢ € (a,z) such that
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For # < a, there exists some ¢ € (x, a) such that the above equation holds.
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3. Calculate cos(1) correct to 3 decimal places. o &b
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Let € R. We defined the open ball of radius r around z, B,.(z), as the set (z — r,z + r). Given a

set U C R, and a point a € R, we say:

e a is an interior point of U if there exists r > 0 so that B,(a) C U.

e a is a boundary point of U if for every r > 0, we have B, NU # 0 and B,.(& NU¢ # 0.

The set of interior points of U is denoted U™, and the set of boundary points of U is denoted OU.

Problem 3
Find examples of sets U C R which:

1. Have no interior points, but have boundary points. { \\&

2. Have no boundary points. VR
i

3. Have countably infinitely many boundary points. NN
,

4. Have uncountably infinitely many boundary points, and countably infinitely many interior points.
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Problem 4
Can a set U C R have finitely many interior points?  Ns!
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We say a set U C R is:
e Open if UM = U.
e Closed if OU C U.

Problem 5
Find examples of sets U C R which:

1. Are open and closed. D\ . ¢) }

2. Are open but not closed. Con « S (.O/ 1) bat | ¢ (O/ )
3. Are closed but not open. tu I') & ¢ D‘qm (; (0,1)) )
4. Are neither open nor closed. C/a / "& . QJ[/\ a em‘s

Problem 6
Show that U C R is open if and only if U€ is closed.
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Recall we have proven the following in class:

o If {U;}ies is an arbitrary collection of open sets, then U U; is also open.
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e If Uy, Us,..., U, is a finite collection of open sets, then ﬂ U; is also open.
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Problem 7

Find an infinite collection of open sets whose intersection is not open.
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Problem 8

1. If {C;}ier is an arbitrary collection of closed sets, show that m C; is also closed.
il
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2. If C1,Cy,...,C, is a finite collection of closed sets, show that U C; is also closed.

i=1

3. Show that finiteness is necessary in 2. In other words, find an infinite collection of closed sets

whose union is not closed.
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