Tutorial 12: Darboux Sums and Integrability MAT157Y5 2021-2022

Recall the following summation identity:

", n(n+1)(2n+1)

Problem 1
Let f:[0,1] - R, f(z) = 22, and P = {0,%,...,%,1}. Compute U(f, P) and L(f, P). Conclude
that f is integrable.

P
U(f,P) = < > Sup e
(f, P) _ N N/ ze(i/N,(i+1)/N) )

Similarly,

Given € > 0, we can pick N sufficiently large, construct the partition depending on N as above, so that
1/N < g, for which U(f, P) — L(f, P) = 1/N < ¢ by the work above.

Problem 2
Let f : [a,b] — R be an integrable function and suppose that [c,d] C [a,b]. Show that the restriction of
f to [e,d] is also integrable.

Define the function g : [c,d] — R, where g(x) = f(x) for all © € [¢,d]. We want to show that g is
integrable.

Let € > 0 be given, we can find a partition P of [a,b] such that U(f, P) — L(f, P) < e.

Assume without the loss of generality that P contains ¢ and d, since adding them in is no problem if we
need to.

Then we can write P = {x1,...2;,¢,...d,z;,... 2}

Let Py = {x1...2;}, let P, ={c,...d}, and let P3 = {z;...x}. Here, P; is a partition of [c, d].

For simplicity of notation let

u(fin) = (@ny1 —xn)  sup - f(z)

we(wvwwn+1)

and let
l(f, n) = (anrl - xn) inf f(x)

TE(Tp  Tn41)
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Then _ i
U(f,P) = u(f,n) +U(g, P2) + Y _ u(f,n)
n=1 n=j
7 k
=>"U(fn)+ Lg, )+ Y _IU(f.n)
n=1 n=j
Then
U(fv ) (f7 ) (97P2) L(gaP2)+Z( (f7 +Z n))
n=1
Therefore, e > U(f, P) — L(f,P) > U(g, P2) — L(g, P») [ |
Problem 3

Let f :[0,1] — R be continuous. Show that f is integrable. Generalize this result to [a,b] instead of
[0,1]. Hint: Recall that continuous over a closed interval implies uniformly continuous.

Idea: Since U(f,P) — L(f,P) = >, (u(f,i) — I(f,7)), we can rewrite this:

n

U(f,P) = L(f,P) =) (ziz1 —a)( swp f(z)— inf f(z))

o zE€(xi,2ip1) T€(Ti,Tit1)

= Z(miH —z)( sup  (f(z)— f(y))

z,y€(Ti,Tit1)

Since f is uniformly continuous, we can bound f(x) — f(y) globally.
Given € > 0, there exists § > 0 such that

[z -yl <d=fz) - fly) <[fx) - fly)l <e
=( suwp  (f(z)-fly) <e

z,y€(Ts,Tiy1)

So we can reach the above condition simply by taking a partition P with I(P) < .

Problem 4
1. Let f : [a,b] — R be continuous, except at one point ¢ € [a,b]. Also suppose f is bounded. Show
that f is still integrable.

2. Let f: [a,b] — R be continuous, except at finitely many points ¢y, ..., ¢, € [a,b]. Also suppose f
is bounded. Using induction, show that f is still integrable.

1) For § > 0, write
[a,b] =[a,c—d8]U[c—d,c+ 0] U[c+ 4]

We know that f is continuous on the first and third intervals, therefore it’s integrable on them.
For the middle interval, Consider the trivial partition {¢ — J,c + d}. Then

U(f,P)—L(f,P)=26( sup f(z)— inf  f(z))

z€(c—6,c+6) z€(c—6,c+6)

Let M be the global bound of f, such that |f(z)| < M for every x € [a, b].
Then, clearly,

26( sup  f(z)— inf  f(z)) <26M
z€(c—b,c+0) z€(c—b,c+0)
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Formally, let € > 0 be given. Choose 0 small enough so that 6 < ¢/6M. Choose partitions Pj, Py of
[a,c — 6], [c+ 0, b] such that the difference of sums on P; and P, are both less than £/3. Then P; U P, forms
a partition of P such that

U(f,P)—L(f,P)<e/34+20M +¢/3
€
6M
=¢/34+¢/3+¢/3

=

<e/3+2—M+¢/3

2) The base case is part 1). Assume we know f being integrable and bounded except on k points implies
that f is integrable. Add in another point, then we can apply our same argument from part a). The only
difference being we argue integrability from our inductive hypothesis, not by continuity.



