Tutorial 13 (i am still kinda sick lol, today is gonna be short hopefully)

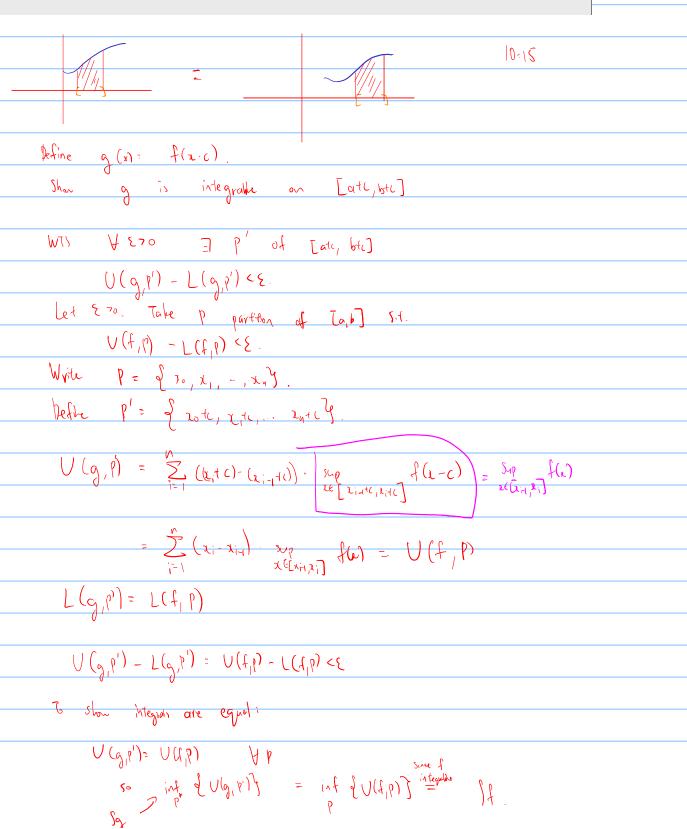
Problem 1

Suppose $f : [a, b] \to \mathbb{R}$ is integrable. Show that for any $c \in \mathbb{R}$,

$$\int_{a+c}^{b+c} f(x-c) \, dx$$

is defined (the underlying function is integrable), and

$$\int_{a+c}^{b+c} f(x-c) \, dx = \int_a^b f(x) \, dx.$$



Problem 2

Suppose $f:[a,b] \to \mathbb{R}$ is bounded and monotone increasing. Show f is integrable.

Lecture proved this !!

Problem 3

7

l

- 1. Show that $f:[1,a] \to \mathbb{R}, f(x) = \frac{1}{x}$ is integrable, for any a > 1.
- 2. Show that for any a > 1 and b > 0,

$$\int_1^a \frac{1}{t} dt = \int_b^{ab} \frac{1}{t} dt.$$

Hint: Scale an arbitrary partition $[x_0, x_1, \ldots, x_n]$ of [1, a] into the partition $[bx_0, bx_1, \ldots, bx_n]$ of [b, ab].

$$\frac{1}{2} \quad is \quad bounded \quad and \quad decreasing \quad on \quad [1, a]$$

$$\frac{1}{2} \quad by \quad nuther \qquad) \quad it's \quad integrable.$$

$$U(\frac{1}{2}, p) = U(\frac{1}{2}, p') \qquad [0.32]$$

$$\frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{$$

$$- \bigcup \left(\frac{1}{x_j} p \right) = \sum_{i=1}^{n} \left(x_i - x_{i-1} \right) \cdot \frac{1}{x_j}$$

Цì

Some with
$$L(\frac{1}{x_{+}}p) = L(\frac{1}{x_{+}}p')$$

Using idea from QI, we can show
$$\pm$$
 integrable over $\overline{b}, \overline{qb}$
and $\int_{b}^{a} \int_{b}^{c} \frac{1}{t} dt := \int_{b}^{ab} \int_{b}^{c} \frac{1}{t} dt$
 $\int_{b}^{ab} \int_{b}^{c} \frac{1}{t} dt = \int_{b}^{a} \int_{c}^{c} \frac{1}{t} dt$
 $\int_{b}^{ab} \int_{c}^{c} \frac{1}{t} dt = \int_{b}^{a} \int_{c}^{c} \frac{1}{t} dt$
 $\int_{b}^{ab} \int_{c}^{c} \frac{1}{t} dt = \int_{b}^{a} \int_{c}^{c} \frac{1}{t} dt$
 $\int_{b}^{ab} \int_{c}^{c} \frac{1}{t} dt = \int_{b}^{a} \int_{c}^{c} \frac{1}{t} dt$
 $\int_{b}^{ab} \int_{c}^{c} \frac{1}{t} dt = \int_{b}^{a} \int_{c}^{c} \frac{1}{t} dt$
 $\int_{b}^{ab} \int_{c}^{c} \frac{1}{t} dt = \int_{b}^{a} \int_{c}^{c} \frac{1}{t} dt$
 $\int_{b}^{ab} \int_{c}^{c} \frac{1}{t} dt = \int_{b}^{ab} \int_{c}^{c} \frac{1}{t} dt$
 $\int_{b}^{ab} \int_{c}^{c} \frac{1}{t} dt = \int_{b}^{ab} \int_{c}^{c} \frac{1}{t} dt$
 $\int_{b}^{c} \frac{1}{t} dt = \int_{b}^{ab} \int_{c}^{c} \frac{1}{t} dt$

Problem 5
$$\int \frac{du_{n}d_{n}}{dt}$$

Suppose f is integrable on $[a,b]$. Show that the function $F:[a,b] \rightarrow \mathbb{R}, x \rightarrow \int_{a}^{b} f$ is continuous.
For $\overline{f}(a) = \overline{f}(x)$ (0.3 or $1/2$ c)
 $\sqrt{2}$ (0.3 or $1/2$ c)
 $\sqrt{2}$ (0.4 $\sqrt{2}$ c)
 $\sqrt{2}$ (0.4 $\sqrt{2$

Core 2 \$5 f <0 FG) = 0 - \$5 f 70 $\overline{f}(b) = b f - 0 < 0$ by I_{UT_1} $\exists c \in (a_1b)$. s-t. $[c_1) = 0$. $(a_{3}e_{3} - b_{3})f=0$ F(a) = 0 - 0 = 0. Example where it's not possible to chose a inside (a,b): f(x)=x on [-1, 1] 1/11/1 -- t (-- o $x \int f = \frac{1}{2} x^{2} - \frac{1}{2} + 0 \quad \text{curley} \quad x = 1$