Tutorial... 14? I believe. I lost count :(

Problem 5
L(z):/ 1ait‘.
1t

Let L : (0,00) = R be defined by
1. Using a similar argument to Problem 3, i.e not using FTC, show that L is an anti-derivative of %

on the domain (0, 00). In this case, L is the unique anti-derivative of i satisfying L(1) = 0.

2. Show that L(zy) = L(z) + L(y) for z,y € R. Hint: treat y as a constant, differentiate with respect
to x, or the other way around.

3. Show that L(1/z) = —L(x) for any = € R, again using differentiation.
4. Show that L(z") = nL(xz) for any integer n # —1 and z € R.

5. Show that L is strictly increasing. Combining this with the fact that it’s differentiable with
continuous derivative, we can apply IFT to obtain a C' inverse exp : R — (0,00). Do you
recognize this function and its inverse?

Here's Problem 5. Unfortunately it looks like Tyler covered all of this in lecture...

Problem 1
Let S = {5% : n € N}. Prove that S has Jordan measure 0.
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Problem 2
Show that an unbounded set cannot have Jordan measure 0.
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Problem 3

For each of the following functions, find an anti-derivative. The anti-derivative must be defined wherever

the function is defined.

—=f

1.f:]R—>]R,f(:c)=x3.é;\: T
2. f:R—=R,f(z)=sinz —cosz
3. f:RoR flz)=2%
4. f:R >R, f(z) = |z|
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5. f:R >R, f(z) = 2", where n € Z and n # —1. (What goes wrong when n = —1? We’ll explore

this in Problem‘? TIFI St
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Problem 4
Let f:[0,00) — R be the function f(x) = 2®. Let F : [0,00) — R be the function:

F(z) = /01 t3dt.

1. Assume h € R. Without using FTC and instead using algebra and other things we know about
integration, simplify the expression:

F(z + h) — F(z)
h

into a single real number times a single integral.

2. Show that: F(z + h) — F(z)
0 o () 0 s

and use this to conclude that F is an anti-derivative of f. Hint: you don’t need anything fancy
here, use the fact that f is monotone increasing.

3. If G is any other anti-derivative of f, show that F(z) = G(z) — G(0).

4. Using (3) and the anti-derivative found in Problem 2, find

2022
/ t3dt.
2021

Simplify your answer so that it contains no integral sign.
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3. If G is any other anti-derivative of f, show that F(z) = G(z) — G(0).
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4. Using (3) and the anti-derivative found in Problem 2, find

2022
f t3dt.
2021

Simplify your answer so that it contains no integral sign.
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