Tutorial... 14? I believe. I lost count :(

Problem 5

Let $L: (0, \infty) \to \mathbb{R}$ be defined by

$$L(x) = \int_1^x \frac{1}{t} dt.$$

- 1. Using a similar argument to Problem 3, i.e not using FTC, show that L is an anti-derivative of $\frac{1}{x}$ on the domain $(0, \infty)$. In this case, L is the unique anti-derivative of $\frac{1}{x}$ satisfying L(1) = 0.
- 2. Show that L(xy) = L(x) + L(y) for $x, y \in \mathbb{R}$. Hint: treat y as a constant, differentiate with respect to x, or the other way around.
- 3. Show that L(1/x) = -L(x) for any $x \in \mathbb{R}$, again using differentiation.
- 4. Show that $L(x^n) = nL(x)$ for any integer $n \neq -1$ and $x \in \mathbb{R}$.
- 5. Show that L is strictly increasing. Combining this with the fact that it's differentiable with continuous derivative, we can apply IFT to obtain a C^1 inverse exp : $\mathbb{R} \to (0, \infty)$. Do you recognize this function and its inverse?

Here's Problem 5. Unfortunately it looks like Tyler covered all of this in lecture...

I.

0 g

COURTS

tines

intervals that over t

Problem 2

Show that an unbounded set cannot have Jordan measure 0.

dizioint

Problem 3

For each of the following functions, find an anti-derivative. The anti-derivative must be defined wherever the function is defined.

1. $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 \cdot \underbrace{x^4}{4}$ 2. $f: \mathbb{R} \to \mathbb{R}, f(x) = \sin x - \cos x$ 3. $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{1}{x^2}$ $\int (t) = x^3$ $-\cos(t) - \sin(t)$ $(-x^{-1}) = x^{-2}$ 4. $f : \mathbb{R} \to \mathbb{R}, f(x) = |x|$ 5. $f: \mathbb{R} \to \mathbb{R}, f(x) = x^n$, where $n \in \mathbb{Z}$ and $n \neq -1$. (What goes wrong when n = -1? We'll explore this in Problem $\overset{}{\searrow}$ 1 76ht $\int \frac{\chi^2}{2} \qquad \chi \ge 0$ $-\frac{\chi^2}{2} \qquad \chi \le 0$ 4. g(x)= $Q'(x) = \begin{cases} x & x > 0 \\ -x & x < 0 \end{cases} = |x|$ $g'(u) = \lim_{x \to 0} \frac{g(u)}{x} = 0$ $\frac{1}{270^+} - \frac{2}{7} - \frac{1}{102} = 0$ lin g(w - lin - x - 0

Problem 4

Let $f: [0,\infty) \to \mathbb{R}$ be the function $f(x) = x^3$. Let $F: [0,\infty) \to \mathbb{R}$ be the function:

$$F(x) = \int_0^x t^3 dt.$$

1. Assume $h \in \mathbb{R}$. Without using FTC and instead using algebra and other things we know about integration, simplify the expression:

$$\frac{F(x+h) - F(x)}{h}$$

into a single real number times a single integral.

2. Show that:

and use this to conclude that F is an anti-derivative of f. Hint: you don't need anything fancy here, use the fact that f is monotone increasing.

- 3. If G is any other anti-derivative of f, show that F(x) = G(x) G(0).
- 4. Using (3) and the anti-derivative found in Problem 2, find

$$\int_{2021}^{2022} t^3 dt.$$

Simplify your answer so that it contains no integral sign.

$$\int \frac{x + h}{h} \frac{t^2 dt}{dt} = \frac{x + h}{h} \frac{t^2 dt}{h}$$

$$\frac{2}{h} \frac{x + h}{h} \frac{t^2 dt}{h} \frac{t^2 dt}{h} \frac{t}{h} \frac{t^2 dt}{h} \frac{t^2 dt}{h} \frac{t^2 dt}{h} \frac{t^2 dt}{h}$$

$$= \lim_{h \to 0} \frac{h \cdot (x + h)^2}{h}$$

$$= \lim_{h \to 0} \frac{h \cdot (x + h)^2}{h}$$

$$= \lim_{h \to 0} \frac{x + h}{h} \frac{x^2 + h^2 dt}{h}$$

$$= \lim_{h \to 0} \frac{x + h}{h} \frac{x^2 + h^2 dt}{h}$$

$$= \lim_{h \to 0} \frac{x + h}{h} \frac{x^2 + h^2 dt}{h}$$

$$= \lim_{h \to 0} \frac{x + h}{h} \frac{x^2 + h^2 dt}{h}$$

$$= \lim_{h \to 0} \frac{x + h}{h} \frac{x^2 + h^2 dt}{h}$$

$$= \lim_{h \to 0} \frac{x + h}{h} \frac{x^2 + h^2 dt}{h}$$

$$= \lim_{h \to 0} \frac{x + h}{h} \frac{x^2 + h^2 dt}{h}$$

$$= \lim_{h \to 0} \frac{x + h}{h} \frac{x^2 + h^2 dt}{h}$$

$$= \int_{h \to 0} \frac{x + h}{h} \frac{x^2 + h^2 dt}{h}$$

$$= \int_{h \to 0} \frac{x + h}{h} \frac{x^2 + h^2 dt}{h}$$

$$= \int_{h \to 0} \frac{x + h}{h} \frac{x^2 + h^2 dt}{h}$$

$$= \int_{h \to 0} \frac{x + h}{h} \frac{x^2 + h^2 dt}{h}$$

$$= \int_{h \to 0} \frac{x + h}{h} \frac{x + h^2 - h^2 -$$

4. Using (3) and the anti-derivative found in Problem 2, find

$$\int_{2021}^{2022} t^3 dt.$$

Simplify your answer so that it contains no integral sign.

$$\begin{array}{c} \text{DIDINIDUIONINDUIODIONIONI } [1:13].\\ \text{Let} \quad (x_1) = \frac{x_1^4}{4}, \quad G'(x_1) = \frac{x_1^4}{4}, \\ \text{log} \quad (3), \quad F(x) = 6(x_1), \quad (x_1) = \frac{x_2}{4}, \\ \frac{2\pi n^2}{2\pi n^2} + \frac{7}{6} +$$