Tutorial 18

Problem 1

Suppose $f : \mathbb{R} \to \mathbb{R}$ is a continuous bijection such that $f^{-1} : \mathbb{R} \to \mathbb{R}$ is also continuous.

- 1. Show that a sequence (a_n) converges if and only if the sequence $(f(a_n))$ converges. If $(f(a_n))$ converges to L, what must (a_n) converge to?
- 2. Give an example of a continuous function g and a sequence (b_n) such that $(g(b_n))$ converges but (b_n) does not converge.

Note: Assignment 12, q2c: the function *does not* have to be continuous everywhere; it only has to be continuous wherever the sequence (an) occurs.

1. Let's show
$$(f(a_n)) \xrightarrow{n \to \infty} f(L)$$
.
Let \$20. WTS INEN $n > N \Rightarrow |f(a_n) - f(L)| < \xi$.
Since $f(t) = at L, \exists \delta > 0 \quad st. |t-L| < \delta \Rightarrow |f(L) - f(L)| < \xi$.
Since $(a_n) \xrightarrow{n \to \infty} L$, $\exists N \in N \quad n > N \Rightarrow |a_n - L| < \delta$
 $\exists r = 1 f(a_n) + f(L)| < \xi$
 $a_s needed$.
2. $a_n = (-1)^n$ $(a_n) does not converge$
Let $g(n) = 0$ (continuous)
 $g(a_n) = 0 \xrightarrow{n \to \infty} 0$

Problem 2

1. Suppose $(a_n), (b_n), (c_n)$ are sequences of real numbers, such that for all $n \in \mathbb{N}$, $a_n \leq b_n \leq c_n$. If (a_n) and (c_n) converge and

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L,$$

show that (b_n) converges and $\lim_{n \to \infty} b_n = L$.

2. Show the same is true if we replace "for all $n \in \mathbb{N}$, $a_n \leq b_n \leq c_n$ " with "there exists $M \in \mathbb{N}$ such that $n \geq M$ implies $a_n \leq b_n \leq c_n$."

1. Let 200. Want a NEW St.
$$n > N = |b_n - L| < \xi$$
.
Since $(q) = 1$ = N = EN St. $n > N = |q_n - L| < \xi$

$$= \sum_{n=1}^{n} \frac{1}{2} \sum_$$

$$\frac{\operatorname{Perture}_{t=1} = e^{t} \frac{d_{n}}{d_{n}} \left(1 \pm \frac{1}{n} \right)^{n} \left((\operatorname{series}_{t=1} + \frac{1}{2} \operatorname{series}_{t=1} + \frac{1}{2} \operatorname{series}_{t=1} \right)$$

$$\frac{\operatorname{Problem 3}}{\left| 1 + \operatorname{Prove that for all } x \in (0, \infty), \right|}$$

$$\frac{\operatorname{Im}_{n \to \infty} \left(\frac{nx}{n+x} \right)^{n}}{\left| \frac{1}{2n} - \frac{1}{2n+x} - \frac{1}{2n+x} \right|}$$

$$(\operatorname{Hint: Factor nx from the denominator.)$$

$$\frac{1}{\left| \frac{1}{2n} - \frac{1}{2n+x} - \frac{1}{2n+x} - \frac{1}{2n+x} \right|}$$

$$\frac{2}{\left| \frac{1}{2n+x} - \frac{1}{2n+x} - \frac{1}{2n+x} - \frac{1}{2n+x} \right|}$$

$$\frac{2}{\left| \frac{1}{2n+x} - \frac{1}{2n+x} - \frac{1}{2n+x} - \frac{1}{2n+x} \right|}$$

$$\frac{2}{\left| \frac{1}{2n+x} - \frac{1}{2$$

4. Compute
$$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$$
. (*Hint*: use problem 1.)
in $\left[t_n + \frac{x}{n} \right]^n$. (*Hint*: use problem 1.)
in $\left[t_n + \frac{x}{n} \right]^n$. (*Hint*: use problem 1.)
in $\left[t_n + \frac{x}{n} \right]^n = x$.
Since $x \mapsto e^{\chi}$ cts,
 $\lim_{n \to \infty} e^{\chi} p \left[\log \left[\left(\left[t + \frac{x}{n} \right]^n \right] \right] = e^{\chi} p(\varepsilon)$ (by fielden 1)
in $\left[t_n + \frac{x}{n} \right]^n$.
Problem 4
Suppose (a_n) is a bounded sequence of real numbers. Define
 $(s_n) = \sup_{k \ge n} a_k = \sup\{a_k : k \ge n\},$
 $(t_n) = \inf_{k \ge n} a_k = \inf\{a_k : k \ge n\}.$
1. Show that (s_n) is monotone nonincreasing and (t_n) is monotone nondecreasing. Conclude that
they both converge.
Remark: We write e_{χ} addts if whether (a_n) (owledges or soft).
 $\lim_{n \to \infty} t_n = \lim_{n \to \infty} a_n$.
They are called the "limit superior" and "limit inferior" of (a_n) , respectively.

$$f = m^{2n}, f = \frac{1}{2} a_{k} + k^{2}m_{J}^{2} \leq \int a_{k} + k^{2}n_{J}^{2}$$

$$Sign = \begin{cases} G_{k} + k^{2}m_{J}^{2} \leq s_{k}p_{1}^{2}a_{k} + k^{2}n_{J}^{2} \\ Sin \leq S_{n} \end{cases}$$

$$So = \begin{cases} S_{n} \\ So = s_{n} \\ Sin \leq S_{n} \end{cases}$$

$$So = \begin{cases} S_{n} \\ Sin + contact + cont$$

$$(\Xi)$$
 suppose $(S_n) \rightarrow L$, $(t_n) \rightarrow L$.

Problem 5

Fix some number x > 0. Define a sequence (a_n) as follows: let $a_1 = 1$, and for all n > 1 define a_n recursively as

$$a_n = \frac{1}{2} \left(a_{n-1} + \frac{x}{a_{n-1}} \right).$$

- 1. Prove that for all $n \in \mathbb{N}$, $a_n > 0$.
- 2. Prove that for all $t \in (0, \infty)$,

$$t + \frac{1}{t} \ge 2.$$

Use this to show that for $n \ge 2$, $a_n \ge \sqrt{x}$. (*Hint*: factor out \sqrt{x} from the parentheses.)

$$t + \frac{1}{4} \ge 2 \Leftrightarrow t^{2} + 1 \ge 2t \Leftrightarrow t^{2} - 2t + 1 \ge 0 \Leftrightarrow (t - 1)^{2} \ge 0$$
For $n \ge 2$, $q_{n} = \frac{1}{2}(q_{n+1} + \frac{2}{q_{n+1}})$

$$= \frac{1}{2} \int z \left(\frac{q_{n+1}}{\sqrt{2}} + \frac{\sqrt{2}}{q_{n+1}}\right)$$

$$\ge \frac{1}{2} \int z \left(z\right) \qquad (\omega, t + \frac{1}{2} - \frac{q_{n-1}}{\sqrt{2}})$$

$$= \int z$$
Prove that (a_{n}) is non-increasing for $n \ge 2$. Conclude that (a_{n}) converges. (*Hint*: prove that for

3. Prove that (a_n) is non-increasing for $n \ge 2$. Conclude that (a_n) converges. (*Hint*: prove that for $n \ge 2, \frac{a_{n+1}}{a_n} \le 1.$)

$$\frac{Q_{n+1}}{Q_n} = \frac{1}{2} \left(\frac{Q_n + \frac{\lambda}{Q_n}}{Q_n} \right) = \frac{1}{2} \left(1 + \frac{\chi}{Q_n^2} \right) \leq \frac{1}{2} \left(1 + \frac{\chi}{J_n^2} \right) = 1$$

$$\frac{Q_n}{Q_n} = \frac{1}{2} \left(1 + \frac{\chi}{Q_n^2} \right) \leq \frac{1}{2} \left(1 + \frac{\chi}{J_n^2} \right) = 1$$

$$\frac{Q_n}{Q_n} = \frac{1}{2} \left(\frac{Q_n}{Q_n^2} + \frac{\chi}{Q_n^2} \right)$$

$$\frac{Q_n}{Q_n} = \frac{1}{2} \left(\frac{Q_n}{Q_n^2} + \frac{\chi}{Q_n^2} \right)$$

$$\frac{Q_n}{Q_n^2} = \frac{1}{2} \left(\frac{Q_n}{Q_n^2}$$