Tutorial 18

Problem 1

Suppose $f : \mathbb{R} \to \mathbb{R}$ is a continuous bijection such that $f^{-1} : \mathbb{R} \to \mathbb{R}$ is also continuous.

- 1. Show that a sequence (a_n) converges if and only if the sequence $(f(a_n))$ converges. If $(f(a_n))$ converges to L, what must (a_n) converge to?
- 2. Give an example of a continuous function g and a sequence (b_n) such that $(g(b_n))$ converges but (b_n) does not converge.

Note: Assignment 12, q2c: the function *does not* have to be continuous everywhere; it only has to be continuous wherever the sequence (an) occurs.

Let's show	(f(a_n)) $\rightarrow 0$	f(D)
Let 50 . WTs	$3N$ CM $n>N$	\Rightarrow $ f(a_n) - f(L) < 6$
Since f cts at L, 350 s.f. $ t-1 < 6 \Rightarrow f(t) - f(L) < 6$		
Since (a_n) $\rightarrow 0$	$3N$ CM $n > N$	$\Rightarrow a_n - 1 < 6$
Since (a_n) $\rightarrow 0$	$3N$ CM $n > N$	$\Rightarrow a_n - 1 < 6$
we need to	$\Rightarrow f(a_n) - f(L) < 6$	
we need to	$\Rightarrow f(a_n) - f(L) < 6$	
Use (a_n) 0 (a_n) (a_n) (b_n) $n \leq N$ (c_n) $(1 - 6)$		
Let 0 (a_n) = 0 (0.01) \Rightarrow (0.0		

Problem 2

1. Suppose $(a_n), (b_n), (c_n)$ are sequences of real numbers, such that for all $n \in \mathbb{N}$, $a_n \leq b_n \leq c_n$. If (a_n) and (c_n) converge and

$$
\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L,
$$

show that (b_n) converges and $\lim_{n \to \infty} b_n = L$.

2. Show the same is true if we replace "for all $n \in \mathbb{N}$, $a_n \leq b_n \leq c_n$ " with "there exists $M \in \mathbb{N}$ such that $n \geq M$ implies $a_n \leq b_n \leq c_n$."

$$
\frac{1 \cdot Let \xi \cdot 0. \quad W \text{ and } a \quad N \in N} \quad s + 1 \quad n > N \Rightarrow |b_{n} - L| < \xi.
$$
\n
$$
\text{Since } (q_{n}) \stackrel{m \to \infty}{\to} L \quad \exists \quad N_{n} \in N \quad s + 1 \quad n > N \Rightarrow |q_{n} - L| < \xi.
$$

$$
\frac{1}{\sum_{n=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} x_{k}} \Rightarrow \frac{1}{\sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} x_{k}} = \frac{1}{\sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} x_{k}} = \frac{1}{\sum_{k=0}^{n} \sum_{k
$$

Let
$$
N = max \{N_q, N_c\}
$$
 if $n \ge N$ then

$$
\wedge^{\wedge} \wedge^{\wedge} a \Rightarrow \ L_{\leq}^{\wedge} \wedge^{\wedge} a_{n} \wedge^{\wedge} b
$$

 $n>N_c \Rightarrow$

$$
b_n \leq c_n < 1 + s
$$
\n
$$
s_0 \qquad L - 2 \leq b_n \leq L + 2 \qquad \Rightarrow \qquad |b_n - L| < 2
$$

 \Rightarrow

 $c_n < L_f$

$$
1. |n
$$
stend of $N = w\alpha r^2Nq, Nq^3, Let N = w\alpha r^2N_1, Nq, Nq^3$

$$
\frac{\text{Next, } \frac{1}{2} \sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n} \left(\cos^{2}x_{0} + \frac{1}{2} \sin^{2}x_{0} + \frac{1}{2}
$$

4. Compute
$$
\lim_{n \to \infty} (1 + \frac{x}{n})^n
$$
. (*Hint*: use problem 1.)
\n $\lim_{n \to \infty} \int_{0}^{1} [(1 + \frac{x}{n})^n] = 2$
\n $\lim_{n \to \infty} \int_{0}^{1} [(1 + \frac{x}{n})^n] = 2$
\n $\lim_{n \to \infty} (1 + \frac{x}{n})^n$
\n $\lim_{n \to \infty} (1 + \frac{x}{n})^n] = \exp(C - \frac{1}{n})^{-1} \text{trid}_{n-1} + \frac{1}{n}$
\n**Problem 4**
\n $\lim_{n \to \infty} (1 + \frac{x}{n})^n$
\n**Problem 5**
\n**Problem 6**
\n $\lim_{n \to \infty} (4 + \frac{x}{n})^n$
\n**Problem 7**
\n**Problem 8**
\n**Example**
\n $(n_n) = \lim_{n \to \infty} a_n = \text{sup } (a_n + k \ge n)$.
\n1. Show that (s_n) is nonodone nonotone nonincreasing and (t_n) is monotone nonotone nonotcreasing. Conclude that
\n $\lim_{n \to \infty} s_n = \lim_{n \to \infty} a_n$
\n $\lim_{n \to \infty} s_n = \lim_{n \to \infty} a_n$
\n $\lim_{n \to \infty} s_n = \lim_{n \to \infty} a_n$
\n $\lim_{n \to \infty} s_n = \lim_{n \to \infty} a_n$
\n $\lim_{n \to \infty} s_n = \lim_{n \to \infty} a_n$
\n $\lim_{n \to \infty} s_n = \lim_{n \to \infty} a_n$
\n $\lim_{n \to \infty} s_n = \lim_{n \to \infty} a_n$
\n $\lim_{n \to \infty} s_n = \lim_{n \to \infty} a_n$
\n $\lim_{n \to \infty} s_n = \lim_{n \to \infty} a_n$
\n $\lim_{n \to \infty} s_n = \lim_{n \to \infty} a_n$
\n $\lim_{n \to$

$$
\text{Im}(\text{Im} \, \mathbf{C}) \quad \text{Supp} \, \text{Im} \, \mathbf{C} \quad (\text{Im} \, \mathbf{C}) \rightarrow \text{Im} \, \mathbf{C} \quad (\text{Im} \, \mathbf{C}) \rightarrow \text{Im} \, \mathbf{C} \ .
$$

$$
\frac{\int_{k\geq n}^{n} a_n \cdot b_n \leq a_n \leq s_n = \sup_{k\geq n} a_n}{\int_{k\geq n} a_n}
$$

Problem 5

Fix some number $x > 0$. Define a sequence (a_n) as follows: let $a_1 = 1$, and for all $n > 1$ define a_n recursively as

$$
a_n = \frac{1}{2} \left(a_{n-1} + \frac{x}{a_{n-1}} \right).
$$

1. Prove that for all $n \in \mathbb{N}$, $a_n > 0$.

1. Proof by Induction. $n=|1 - a_1| > 0$
Assume $a_1 > 0$. $a_{n+1} = \pm (a_n + \frac{1}{a_n}) > 0$.

2. Prove that for all $t \in (0, \infty)$,

3.

$$
t+\frac{1}{t}\geq 2.
$$

Use this to show that for $n \geq 2$, $a_n \geq \sqrt{x}$. (*Hint*: factor out \sqrt{x} from the parentheses.)

$$
f + \frac{1}{2} \leq 2 \iff f^2 + 2 \iff f^2 - 2f + 2 \iff (f - 1)^2 \geq 0
$$
\n
$$
\frac{1}{2} \text{ for } n \geq 2, \quad q_n \geq \left(\frac{q_{n-1}}{\sqrt{2}} + \frac{3}{\sqrt{2}} \right)
$$
\n
$$
\frac{1}{2} \sum_{n=1}^{n} \left(\frac{q_{n-1}}{\sqrt{2}} + \frac{3}{\sqrt{2}} \right)
$$
\n
$$
\frac{1}{2} \sum_{n=1}^{n} \left(\frac{q_{n-1}}{\sqrt{2}} + \frac{3}{\sqrt{2}} \right)
$$
\n
$$
\frac{1}{2} \sum_{n=1}^{n} \left(\frac{q_{n-1}}{\sqrt{2}} \right)
$$
\n
$$
\frac{1}{2} \sum_{n=1}^{n} \left(\frac{q_{n-1}}{2} \right) = \frac{1}{2} \text{ Conclude that } (a_n) \text{ converges. (Hint: prove that for } n \geq 2, \frac{a_{n+1}}{a_n} \leq 1.)
$$
\n
$$
\frac{q_{n+1}}{q_n} = \frac{1}{2} \left(\frac{1}{2} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{3}{2} \right) \leq \frac{1}{2} \left(\frac{1}{2} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{3}{2} \right)
$$

4. Compute
$$
\lim_{n \to \infty} a_n
$$

\n4. Compute $\lim_{n \to \infty} a_n$.
\n5) $\lim_{n \to \infty} (a_n)$ (or we get $\lim_{n \to \infty} 2x$ we know $\lim_{n \to \infty} a_n$ exist.
\nLet $\lim_{n \to \infty} a_n = \lim_{n \to \infty} (a_{n-1} + \frac{x}{a_{n-1}})$
\n $= \frac{1}{2} \left[\lim_{n \to \infty} a_{n-1} \right] + \lim_{n \to \infty} a_{n-1}$
\n $= \frac{1}{2} \left[\left(\lim_{n \to \infty} a_{n-1} \right) + \lim_{n \to \infty} a_{n-1} \right]$
\n $= \frac{1}{2} \left(\frac{x}{2} \right)$
\n $\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n-1}$
\n $= \frac{1}{2} \left(\frac{x}{2} \right)$
\n $\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_n$
\n $\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_n$
\n $\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_n$
\n $\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_n$
\n $\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_n$
\n $\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_n$
\n $\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_n$
\n $\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_n$
\n $\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_n$
\n $\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_n$
\n $\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_n$
\n $\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_n$
\n