Problem 1

1. Suppose that f is continuous and that the sequence

$$x, f(x), f(f(x)), f(f(f(x))), \ldots$$

converges to L. Prove that L is a "fixed point" for f, i.e., f(L) = L.

2. A function $f:[a,b] \to [a,b]$ is called a contraction if there exists c < 1 such that, for all $x, y \in [a,b]$,

 $|f(x) - f(y)| \le c|x - y|.$

Prove that any contraction has a unique fixed point.

Solution. 1. Let a_n be f composed with itself n times, evaluated on x. Then $\lim_{n \to \infty} a_n = L$. Since f is continuous,

$$f\left(\lim_{n\to\infty}a_n\right) = \lim_{n\to\infty}f(a_n),$$

but $f(a_n) = a_{n+1}$, so $\lim_{n \to \infty} f(a_n) = L$.

2. First, note that a contraction is continuous. To see this, let $\epsilon > 0$ be given. Then if $|x - y| < \epsilon/c$, $|f(x) - f(y)| \le c|x - y| < \epsilon$. Now, we'll show that $x, f(x), f(f(x)), \ldots$ converges. Suppose |f(x) - f(y)| < c|x - y| for all $x, y \in [a, b]$. Let $x \in [a, b]$ and $\epsilon > 0$ be given. Since 0 < c < 1, we know $c^n \to 0$ as $n \to \infty$. Thus, there exists $N \in \mathbb{N}$ such that n > N implies $c^n < \frac{\epsilon(1 - c)}{|x - f(x)|}$. Now let m > n > N. We have

$$\begin{split} |f^{m}(x) - f^{n}(x)| &= |f^{m}(x) + (f^{m-1}(x) - f^{m-1}(x)) + \dots + (f^{n+1}(x) - f^{n+1}(x)) - f^{n}(x)| \\ &\leq |f^{m}(x) - f^{m-1}(x)| + \dots + |f^{n+1}(x) - f^{n}(x)| \\ &\leq c^{m-1}|x - f(x)| + \dots + c^{n+1}|x - f(x)| + c^{n}|x - f(x)| \\ &= c^{n}|x - f(x)| \cdot \sum_{k=0}^{m-n-1} c^{k} \\ &\leq c^{n}|x - f(x)| \cdot \sum_{k=0}^{\infty} c^{k} \\ &= c^{n}|x - f(x)| \cdot \left(\frac{1}{1-c}\right) \\ &< \frac{\epsilon(1-c)}{|x - f(x)|} \cdot |x - f(x)| \cdot \left(\frac{1}{1-c}\right) \\ &= \epsilon. \end{split}$$

Thus, this sequence is Cauchy and thus convergent. By part 1, the limit L of this sequence is a fixed point of f. If L' were a different fixed point, we could let $\epsilon > 0$ be given, and let $N \in \mathbb{N}$ be so large that n > N implies $c^n < \epsilon/|L - L'|$. Then $|L - L'| = |f^n(L) - f^n(L)| \le c^n|L - L'| < \epsilon$. Since $\epsilon > 0$ is arbitrary, L = L'; a contradiction. Thus the fixed point of f is unique.

Recall that if $(s_n), (t_n)$ are sequences of real numbers, and for some $N \in \mathbb{N}$ we have n > N implies $s_n \leq t_n$, then

$$\begin{split} \liminf_{n \to \infty} s_n &\leq \liminf_{n \to \infty} t_n \\ \limsup_{n \to \infty} s_n &\leq \limsup_{n \to \infty} t_n \end{split}$$

and for any bounded sequence (a_n) , $\lim_{n \to \infty} a_n = L$ if and only if

$$\liminf_{n \to \infty} a_n = L = \limsup_{n \to \infty} a_n.$$

Also recall the **binomial theorem**: for all $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Problem 2

- 1. Prove that $\sum_{n=0}^{\infty} \frac{1}{n!}$ converges.
- 2. Prove that for all $n \in \mathbb{N}$,

$$\left(1+\frac{1}{n}\right)^n = \sum_{k=0}^n \frac{1}{k!} \left(1-\frac{1}{n}\right) \left(1-\frac{2}{n}\right) \cdots \left(1-\frac{k-1}{n}\right).$$

Conclude that $\left(1+\frac{1}{n}\right)^n \leq \sum_{k=0}^n \frac{1}{k!}.$

3. Prove that

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \ge \sum_{n=0}^{\infty} \frac{1}{n!}$$

Conclude that $\sum_{n=0}^{\infty} \frac{1}{n!} = e$. *Hint*: Fix some $m \in \mathbb{N}$ and show $\sum_{k=0}^{m} \frac{1}{k!} \leq \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$, then let m go to infinity.

4. Show that for all $n \in \mathbb{N}$,

$$e - \sum_{k=0}^{n} \frac{1}{k!} = \sum_{m=n+1}^{\infty} \frac{1}{m!} < \frac{1}{n!n!}$$

How many terms of this series do we need to compute e accurate up to 10 decimal places?

5. Prove that e is irrational. *Hint*: If e = p/q for $p \in \mathbb{Z}$ and $q \in \mathbb{N}$, then

$$0 < q! q \left(e - \sum_{k=0}^{q} \frac{1}{k!} \right) < 1.$$

How does this lead to a contradiction?

Solution. 1. Notice that

$$\sum_{n=0}^{\infty} \frac{1}{n!} = 1 + 1 + \frac{1}{2} + \frac{1}{3 \cdot 2} + \frac{1}{4 \cdot 3 \cdot 2} + \cdots$$
$$< 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \cdots$$

so this series converges by the basic comparison test. (Alternatively, the RHS on the last line sums to 3 and the sequence of partial sums is increasing.)

2. By the Binomial Theorem,

$$\left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k}$$

$$= \sum_{k=0}^n \frac{1}{k!} \frac{(n-1)\cdots(n-(k-1))}{n^{k-1}}$$

$$= \sum_{k=0}^n \frac{1}{k!} \left(\frac{n-1}{n}\right) \cdots \left(\frac{n-(k-1)}{n}\right)$$

$$= \sum_{k=0}^n \frac{1}{k!} \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right).$$

Note that since $k \le n, 0, \dots, k-1 < n$, so $\left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right) < 1$ meaning

$$\sum_{k=0}^{n} \frac{1}{k!} \left(1 - \frac{1}{n} \right) \cdots \left(1 - \frac{k-1}{n} \right) < \sum_{k=0}^{n} \frac{1}{k!}$$

3. Suppose m < n are natural numbers, then

$$\left(1+\frac{1}{n}\right)^n = \sum_{k=0}^n \frac{1}{k!} \left(1-\frac{1}{n}\right) \cdots \left(1-\frac{k-1}{n}\right)$$
$$> \sum_{k=0}^m \frac{1}{k!} \left(1-\frac{1}{n}\right) \cdots \left(1-\frac{k-1}{n}\right),$$

Taking the limit of both sides as $n \to \infty$,

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \ge \sum_{k=0}^m \frac{1}{k!}$$

Taking the limit of both sides as $m \to \infty$,

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \ge \sum_{k=0}^{\infty} \frac{1}{k!}$$

4.

$$\begin{aligned} 0 < e - \sum_{k=0}^{n} \frac{1}{k!} &= \sum_{k=n+1}^{\infty} \frac{1}{k!} \\ &= \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \cdots \\ &= \frac{1}{(n+1)!} \left[1 + \frac{1}{n+2} + \frac{1}{(n+3)(n+2)} + \cdots \right] \\ &< \frac{1}{(n+1)!} \left[1 + \frac{1}{n+1} + \frac{1}{(n+1)^2} + \frac{1}{(n+1)^3} \cdots \right] \\ &= \frac{1}{(n+1)!} \left[\frac{1}{1 - \frac{1}{n+1}} \right] \\ &= \frac{1}{(n+1)!} \cdot \frac{n+1}{n} \\ &= \frac{1}{n!n} \end{aligned}$$

Note that $13! \cdot 13 = 80951270400 > 8 \cdot 10^{10} > 10^{10}$, so $\frac{1}{13! \cdot 13} < 10^{-10}$. 5. If e = p/q.

$$0 < q! q \left(e - \sum_{k=0}^{q} \frac{1}{k!} \right) < 1.$$

Since qe = p, $q!qe \in \mathbb{Z}$. Since $q \ge 0, \ldots, q$, for all $k = 0, \ldots, q$, $q!/k! \in \mathbb{Z}$, so $q!q \sum_{k=0}^{q} \frac{1}{k!} \in \mathbb{Z}$. But there are no integers strictly between 0 and 1 so we have a contradiction. Thus, e is irrational.

Problem 3

Show that if $\lim_{n \to \infty} a_n = L$ then

$$\lim_{n \to \infty} \frac{(a_1 + \dots + a_n)}{n} = L.$$

Hint: Separate and bound: for large enough N, a_N is close to L. This means $a_N + \cdots + a_{N+M}$ is close to $M \cdot L$, so $(a_N + \cdots + a_{N+M})/(N+M)$ is close to $(M \cdot L)/(M+N)$. If M is large in comparison to N, then $(M \cdot L)/(M + N)$ is close to L.

Solution. Let $\epsilon > 0$ be given and let N be large enough so that n > N implies $|a_n - L| < \epsilon$. Then for all $M \in \mathbb{N},$

$$\left| \left(\frac{1}{N+M} \sum_{k=1}^{N+M} a_k \right) - L \right| \le \frac{1}{N+M} \left| \sum_{k=1}^N a_k - NL \right| + \left| \frac{1}{N+M} \sum_{k=N+1}^{N+M} a_k - \frac{ML}{N+M} \right|$$
$$< \frac{1}{N+M} \left| \sum_{k=1}^N a_k - NL \right| + \frac{M\epsilon}{N+M},$$

Note, though, that $1/(N+M) \to 0$ and $M/(N+M) \to 1$ as $M \to \infty$. So assume M' is large enough s.t. M > M' implies $1/(N+M) < \frac{\epsilon}{\left|\sum_{k=1}^{N} a_k - NL\right|}$ (if the expression in absolute value is positive; otherwise

there's nothing to do here) and $M(N+M) < 1 + \epsilon$, then if n = N + M,

$$\left|\frac{(a_1+\dots+a_n)}{n}-L\right| < \frac{1}{N+M} \left|\sum_{k=1}^N a_k - \frac{NL}{N+M}\right| + \frac{M\epsilon}{N+M} < 2\epsilon + \epsilon^2.$$