
Tutorial 20: More Series MAT157Y5 2021-2022

Problem 1

1. Suppose that f is continuous and that the sequence

x, f(x), f(f(x)), f(f(f(x))), . . .

converges to L. Prove that L is a “fixed point” for f , i.e., f(L) = L.

2. A function f : [a, b]→ [a, b] is called a contraction if there exists c < 1 such that, for all x, y ∈ [a, b],

|f(x)− f(y)| ≤ c|x− y|.

Prove that any contraction has a unique fixed point.

Solution. 1. Let an be f composed with itself n times, evaluated on x. Then lim
n→∞

an = L. Since f is

continuous,

f
(

lim
n→∞

an

)
= lim

n→∞
f(an),

but f(an) = an+1, so lim
n→∞

f(an) = L.

2. First, note that a contraction is continuous. To see this, let ε > 0 be given. Then if |x − y| < ε/c,
|f(x) − f(y)| ≤ c|x − y| < ε. Now, we’ll show that x, f(x), f(f(x)), . . . converges. Suppose |f(x) − f(y)| <
c|x − y| for all x, y ∈ [a, b]. Let x ∈ [a, b] and ε > 0 be given. Since 0 < c < 1, we know cn → 0 as n → ∞.

Thus, there exists N ∈ N such that n > N implies cn <
ε(1− c)
|x− f(x)|

. Now let m > n > N . We have

|fm(x)− fn(x)| = |fm(x) + (fm−1(x)− fm−1(x)) + · · ·+ (fn+1(x)− fn+1(x))− fn(x)|
≤ |fm(x)− fm−1(x)|+ · · ·+ |fn+1(x)− fn(x)|
≤ cm−1|x− f(x)|+ · · ·+ cn+1|x− f(x)|+ cn|x− f(x)|

= cn|x− f(x)| ·
m−n−1∑
k=0

ck

≤ cn|x− f(x)| ·
∞∑
k=0

ck

= cn|x− f(x)| ·
(

1

1− c

)
<

ε(1− c)
|x− f(x)|

· |x− f(x)| ·
(

1

1− c

)
= ε.

Thus, this sequence is Cauchy and thus convergent. By part 1, the limit L of this sequence is a fixed point
of f . If L′ were a different fixed point, we could let ε > 0 be given, and let N ∈ N be so large that n > N
implies cn < ε/|L−L′|. Then |L−L′| = |fn(L)− fn(L)| ≤ cn|L−L′| < ε. Since ε > 0 is arbitrary, L = L′;
a contradiction. Thus the fixed point of f is unique.
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Recall that if (sn), (tn) are sequences of real numbers, and for some N ∈ N we have n > N implies
sn ≤ tn, then

lim inf
n→∞

sn ≤ lim inf
n→∞

tn

lim sup
n→∞

sn ≤ lim sup
n→∞

tn

and for any bounded sequence (an), lim
n→∞

an = L if and only if

lim inf
n→∞

an = L = lim sup
n→∞

an.

Also recall the binomial theorem: for all x, y ∈ R and n ∈ N,

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k

Problem 2

1. Prove that

∞∑
n=0

1

n!
converges.

2. Prove that for all n ∈ N,(
1 +

1

n

)n

=

n∑
k=0

1

k!

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− k − 1

n

)
.

Conclude that

(
1 +

1

n

)n

≤
n∑

k=0

1

k!
.

3. Prove that

lim
n→∞

(
1 +

1

n

)n

≥
∞∑

n=0

1

n!
.

Conclude that

∞∑
n=0

1

n!
= e. Hint : Fix some m ∈ N and show

m∑
k=0

1

k!
≤ lim

n→∞

(
1 +

1

n

)n

, then let m

go to infinity.

4. Show that for all n ∈ N,

e−
n∑

k=0

1

k!
=

∞∑
m=n+1

1

m!
<

1

n!n
.

How many terms of this series do we need to compute e accurate up to 10 decimal places?

5. Prove that e is irrational. Hint : If e = p/q for p ∈ Z and q ∈ N, then

0 < q!q

(
e−

q∑
k=0

1

k!

)
< 1.

How does this lead to a contradiction?
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Solution. 1. Notice that

∞∑
n=0

1

n!
= 1 + 1 +

1

2
+

1

3 · 2
+

1

4 · 3 · 2
+ · · ·

< 1 + 1 +
1

2
+

1

22
+

1

23
+ · · ·

so this series converges by the basic comparison test. (Alternatively, the RHS on the last line sums to 3 and
the sequence of partial sums is increasing.)

2. By the Binomial Theorem,(
1 +

1

n

)n

=

n∑
k=0

(
n

k

)
1

nk

=

n∑
k=0

1

k!

(n− 1) · · · (n− (k − 1))

nk−1

=

n∑
k=0

1

k!

(
n− 1

n

)
· · ·
(
n− (k − 1)

n

)

=

n∑
k=0

1

k!

(
1− 1

n

)
· · ·
(

1− k − 1

n

)
.

Note that since k ≤ n, 0, . . . , k − 1 < n, so

(
1− 1

n

)
· · ·
(

1− k − 1

n

)
< 1 meaning

n∑
k=0

1

k!

(
1− 1

n

)
· · ·
(

1− k − 1

n

)
<

n∑
k=0

1

k!

3. Suppose m < n are natural numbers, then(
1 +

1

n

)n

=

n∑
k=0

1

k!

(
1− 1

n

)
· · ·
(

1− k − 1

n

)

>

m∑
k=0

1

k!

(
1− 1

n

)
· · ·
(

1− k − 1

n

)
,

Taking the limit of both sides as n→∞,

lim
n→∞

(
1 +

1

n

)n

≥
m∑

k=0

1

k!
.

Taking the limit of both sides as m→∞,

lim
n→∞

(
1 +

1

n

)n

≥
∞∑
k=0

1

k!
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4.

0 < e−
n∑

k=0

1

k!
=

∞∑
k=n+1

1

k!

=
1

(n+ 1)!
+

1

(n+ 2)!
+ · · ·

=
1

(n+ 1)!

[
1 +

1

n+ 2
+

1

(n+ 3)(n+ 2)
+ · · ·

]
<

1

(n+ 1)!

[
1 +

1

n+ 1
+

1

(n+ 1)2
+

1

(n+ 1)3
· · ·
]

=
1

(n+ 1)!

[
1

1− 1
n+1

]

=
1

(n+ 1)!
· n+ 1

n

=
1

n!n

Note that 13! · 13 = 80951270400 > 8 · 1010 > 1010, so
1

13! · 13
< 10−10.

5. If e = p/q.

0 < q!q

(
e−

q∑
k=0

1

k!

)
< 1.

Since qe = p, q!qe ∈ Z. Since q ≥ 0, . . . , q, for all k = 0, . . . , q, q!/k! ∈ Z, so q!q

q∑
k=0

1

k!
∈ Z. But there are no

integers strictly between 0 and 1 so we have a contradiction. Thus, e is irrational.
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Problem 3
Show that if lim

n→∞
an = L then

lim
n→∞

(a1 + · · ·+ an)

n
= L.

Hint : Separate and bound: for large enough N , aN is close to L. This means aN + · · ·+ aN+M is close
to M · L, so (aN + · · ·+ aN+M )/(N +M) is close to (M · L)/(M +N). If M is large in comparison to
N , then (M · L)/(M +N) is close to L.

Solution. Let ε > 0 be given and let N be large enough so that n > N implies |an − L| < ε. Then for all
M ∈ N, ∣∣∣∣∣

(
1

N +M

N+M∑
k=1

ak

)
− L

∣∣∣∣∣ ≤ 1

N +M

∣∣∣∣∣
N∑

k=1

ak −NL

∣∣∣∣∣+

∣∣∣∣∣ 1

N +M

N+M∑
k=N+1

ak −
ML

N +M

∣∣∣∣∣
<

1

N +M

∣∣∣∣∣
N∑

k=1

ak −NL

∣∣∣∣∣+
Mε

N +M
,

Note, though, that 1/(N + M) → 0 and M/(N + M) → 1 as M → ∞. So assume M ′ is large enough s.t.

M > M ′ implies 1/(N + M) <
ε∣∣∣∑N

k=1 ak −NL
∣∣∣ (if the expression in absolute value is positive; otherwise

there’s nothing to do here) and M(N +M) < 1 + ε, then if n = N +M ,∣∣∣∣ (a1 + · · ·+ an)

n
− L

∣∣∣∣ < 1

N +M

∣∣∣∣∣
N∑

k=1

ak −
NL

N +M

∣∣∣∣∣+
Mε

N +M
< 2ε+ ε2.
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