Problem 1

1. Suppose that f is continuous and that the sequence

$$
x, f(x), f(f(x)), f(f(f(x))), \ldots
$$

converges to L. Prove that L is a "fixed point" for f, i.e., $f(L) = L$.

2. A function $f : [a, b] \to [a, b]$ is called a contraction if there exists $c < 1$ such that, for all $x, y \in [a, b]$,

 $|f(x) - f(y)| \le c|x - y|$.

Prove that any contraction has a unique fixed point.

Solution. 1. Let a_n be f composed with itself n times, evaluated on x. Then $\lim_{n\to\infty} a_n = L$. Since f is continuous,

$$
f\left(\lim_{n\to\infty}a_n\right)=\lim_{n\to\infty}f(a_n),
$$

but $f(a_n) = a_{n+1}$, so $\lim_{n \to \infty} f(a_n) = L$.

2. First, note that a contraction is continuous. To see this, let $\epsilon > 0$ be given. Then if $|x - y| < \epsilon/c$, $|f(x) - f(y)| \le c|x - y| < \epsilon$. Now, we'll show that $x, f(x), f(f(x)), \ldots$ converges. Suppose $|f(x) - f(y)| <$ $c|x-y|$ for all $x, y \in [a, b]$. Let $x \in [a, b]$ and $\epsilon > 0$ be given. Since $0 < c < 1$, we know $c^n \to 0$ as $n \to \infty$. Thus, there exists $N \in \mathbb{N}$ such that $n > N$ implies $c^n < \frac{\epsilon(1-c)}{1-\epsilon}$ $\frac{C(1-\epsilon)}{|x-f(x)|}$. Now let $m > n > N$. We have

$$
|f^{m}(x) - f^{n}(x)| = |f^{m}(x) + (f^{m-1}(x) - f^{m-1}(x)) + \dots + (f^{n+1}(x) - f^{n+1}(x)) - f^{n}(x)|
$$

\n
$$
\leq |f^{m}(x) - f^{m-1}(x)| + \dots + |f^{n+1}(x) - f^{n}(x)|
$$

\n
$$
\leq c^{m-1}|x - f(x)| + \dots + c^{n+1}|x - f(x)| + c^{n}|x - f(x)|
$$

\n
$$
= c^{n}|x - f(x)| \cdot \sum_{k=0}^{m-n-1} c^{k}
$$

\n
$$
\leq c^{n}|x - f(x)| \cdot \sum_{k=0}^{\infty} c^{k}
$$

\n
$$
= c^{n}|x - f(x)| \cdot \left(\frac{1}{1 - c}\right)
$$

\n
$$
< \frac{\epsilon(1 - c)}{|x - f(x)|} \cdot |x - f(x)| \cdot \left(\frac{1}{1 - c}\right)
$$

\n
$$
= \epsilon.
$$

Thus, this sequence is Cauchy and thus convergent. By part 1, the limit L of this sequence is a fixed point of f. If L' were a different fixed point, we could let $\epsilon > 0$ be given, and let $N \in \mathbb{N}$ be so large that $n > N$ implies $c^n < \epsilon/|L - L'|$. Then $|L - L'| = |f^n(L) - f^n(L)| \le c^n |L - L'| < \epsilon$. Since $\epsilon > 0$ is arbitrary, $L = L'$; a contradiction. Thus the fixed point of f is unique.

 \Box

Recall that if (s_n) , (t_n) are sequences of real numbers, and for some $N \in \mathbb{N}$ we have $n > N$ implies $s_n \leq t_n$, then

$$
\liminf_{n \to \infty} s_n \le \liminf_{n \to \infty} t_n
$$

$$
\limsup_{n \to \infty} s_n \le \limsup_{n \to \infty} t_n
$$

and for any bounded sequence (a_n) , $\lim_{n \to \infty} a_n = L$ if and only if

$$
\liminf_{n \to \infty} a_n = L = \limsup_{n \to \infty} a_n.
$$

Also recall the **binomial theorem**: for all $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$
(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}
$$

Problem 2

- 1. Prove that $\sum_{n=1}^{\infty}$ $n=0$ 1 $\frac{1}{n!}$ converges.
- 2. Prove that for all $n \in \mathbb{N}$,

$$
\left(1+\frac{1}{n}\right)^n = \sum_{k=0}^n \frac{1}{k!} \left(1-\frac{1}{n}\right) \left(1-\frac{2}{n}\right) \cdots \left(1-\frac{k-1}{n}\right).
$$

Conclude that $\left(1+\frac{1}{n}\right)$ n $\Big)^n \leq \sum_{n=1}^{\infty}$ $k=0$ 1 $\frac{1}{k!}$.

3. Prove that

$$
\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \ge \sum_{n=0}^{\infty} \frac{1}{n!}
$$

.

Conclude that $\sum_{n=0}^{\infty}$ $n=0$ 1 $\frac{1}{n!} = e$. *Hint*: Fix some $m \in \mathbb{N}$ and show $\sum_{k=0}^{m}$ $k=0$ 1 $\frac{1}{k!} \le \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)$ n $\Big)^n$, then let m go to infinity.

4. Show that for all $n \in \mathbb{N}$,

$$
e - \sum_{k=0}^{n} \frac{1}{k!} = \sum_{m=n+1}^{\infty} \frac{1}{m!} < \frac{1}{n!n}.
$$

How many terms of this series do we need to compute e accurate up to 10 decimal places?

5. Prove that e is irrational. Hint: If $e = p/q$ for $p \in \mathbb{Z}$ and $q \in \mathbb{N}$, then

$$
0 < q!q \left(e - \sum_{k=0}^{q} \frac{1}{k!} \right) < 1.
$$

How does this lead to a contradiction?

Solution. 1. Notice that

$$
\sum_{n=0}^{\infty} \frac{1}{n!} = 1 + 1 + \frac{1}{2} + \frac{1}{3 \cdot 2} + \frac{1}{4 \cdot 3 \cdot 2} + \cdots
$$

< 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \cdots

so this series converges by the basic comparison test. (Alternatively, the RHS on the last line sums to 3 and the sequence of partial sums is increasing.)

2. By the Binomial Theorem,

$$
\left(1+\frac{1}{n}\right)^n = \sum_{k=0}^n {n \choose k} \frac{1}{n^k}
$$

$$
= \sum_{k=0}^n \frac{1}{k!} \frac{(n-1)\cdots(n-(k-1))}{n^{k-1}}
$$

$$
= \sum_{k=0}^n \frac{1}{k!} \left(\frac{n-1}{n}\right) \cdots \left(\frac{n-(k-1)}{n}\right)
$$

$$
= \sum_{k=0}^n \frac{1}{k!} \left(1-\frac{1}{n}\right) \cdots \left(1-\frac{k-1}{n}\right).
$$

Note that since $k \leq n, 0, \ldots, k - 1 < n$, so $\left(1 - \frac{1}{n}\right)$ n $\bigg) \cdots \bigg(1 - \frac{k-1}{k} \bigg)$ n $\Big)$ < 1 meaning

$$
\sum_{k=0}^{n} \frac{1}{k!} \left(1 - \frac{1}{n} \right) \cdots \left(1 - \frac{k-1}{n} \right) < \sum_{k=0}^{n} \frac{1}{k!}
$$

3. Suppose $m < n$ are natural numbers, then

$$
\left(1+\frac{1}{n}\right)^n = \sum_{k=0}^n \frac{1}{k!} \left(1-\frac{1}{n}\right) \cdots \left(1-\frac{k-1}{n}\right)
$$

$$
> \sum_{k=0}^m \frac{1}{k!} \left(1-\frac{1}{n}\right) \cdots \left(1-\frac{k-1}{n}\right),
$$

Taking the limit of both sides as $n \to \infty$,

$$
\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \ge \sum_{k=0}^m \frac{1}{k!}.
$$

Taking the limit of both sides as $m \to \infty$,

$$
\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \ge \sum_{k=0}^{\infty} \frac{1}{k!}
$$

4.

$$
0 < e - \sum_{k=0}^{n} \frac{1}{k!} = \sum_{k=n+1}^{\infty} \frac{1}{k!}
$$
\n
$$
= \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \cdots
$$
\n
$$
= \frac{1}{(n+1)!} \left[1 + \frac{1}{n+2} + \frac{1}{(n+3)(n+2)} + \cdots \right]
$$
\n
$$
< \frac{1}{(n+1)!} \left[1 + \frac{1}{n+1} + \frac{1}{(n+1)^2} + \frac{1}{(n+1)^3} \cdots \right]
$$
\n
$$
= \frac{1}{(n+1)!} \left[\frac{1}{1 - \frac{1}{n+1}} \right]
$$
\n
$$
= \frac{1}{(n+1)!} \cdot \frac{n+1}{n}
$$
\n
$$
= \frac{1}{n!n}
$$

Note that $13! \cdot 13 = 80951270400 > 8 \cdot 10^{10} > 10^{10}$, so $\frac{1}{10!}$ $\frac{1}{13! \cdot 13}$ < 10⁻¹⁰. 5. If $e = p/q$.

$$
0 < q!q \left(e - \sum_{k=0}^{q} \frac{1}{k!} \right) <
$$

< 1.

Since $qe = p$, $q!qe \in \mathbb{Z}$. Since $q \geq 0, \ldots, q$, for all $k = 0, \ldots, q$, $q!/k! \in \mathbb{Z}$, so $q!q \sum_{i=1}^{q}$ $k=0$ 1 $\frac{1}{k!} \in \mathbb{Z}$. But there are no integers strictly between 0 and 1 so we have a contradiction. Thus, e is irrational.

 \Box

Problem 3

Show that if $\lim_{n \to \infty} a_n = L$ then

 $\lim_{n\to\infty}\frac{(a_1+\cdots+a_n)}{n}$ $\frac{1-\alpha_n}{n} = L.$

Hint: Separate and bound: for large enough N, a_N is close to L. This means $a_N + \cdots + a_{N+M}$ is close to $M \cdot L$, so $(a_N + \cdots + a_{N+M})/(N+M)$ is close to $(M \cdot L)/(M+N)$. If M is large in comparison to N, then $(M L)/(M + N)$ is close to L.

Solution. Let $\epsilon > 0$ be given and let N be large enough so that $n > N$ implies $|a_n - L| < \epsilon$. Then for all $M \in \mathbb{N}$,

$$
\left| \left(\frac{1}{N+M} \sum_{k=1}^{N+M} a_k \right) - L \right| \le \frac{1}{N+M} \left| \sum_{k=1}^{N} a_k - NL \right| + \left| \frac{1}{N+M} \sum_{k=N+1}^{N+M} a_k - \frac{ML}{N+M} \right|
$$

$$
< \frac{1}{N+M} \left| \sum_{k=1}^{N} a_k - NL \right| + \frac{M\epsilon}{N+M},
$$

Note, though, that $1/(N+M) \to 0$ and $M/(N+M) \to 1$ as $M \to \infty$. So assume M' is large enough s.t. $M > M'$ implies $1/(N+M) < \frac{\epsilon}{1-N}$ $\left|\sum_{k=1}^{N} a_k - NL\right|$ (if the expression in absolute value is positive; otherwise

there's nothing to do here) and $M(N + M) < 1 + \epsilon$, then if $n = N + M$,

$$
\left|\frac{(a_1+\dots+a_n)}{n}-L\right|<\frac{1}{N+M}\left|\sum_{k=1}^N a_k-\frac{NL}{N+M}\right|+\frac{M\epsilon}{N+M}<2\epsilon+\epsilon^2.
$$