
Tutorial 21: Sequncees/Series of functions MAT157Y5 2021-2022

Problem 1
For α ∈ R and n ∈ N, we definea (

α

n

)
=
α(α− 1) . . . (α− n+ 1)

n!
.

In this problem, we will deduce that for |x| < 1,

(1 + x)α =

∞∑
n=0

(
α

n

)
xn. (1)

1. Show that

∞∑
n=0

(
α

n

)
xn converges if |x| < 1 using the ratio test.

2. Let f(x) =

∞∑
n=0

(
α

n

)
xn for |x| < 1. Show that (1 + x)f ′(x) = αf(x).

3. Suppose f : (−1, 1) → R is a differentiable function satisfying (1 + x)f ′(x) = αf(x). Show that
f(x) = c(1 + x)α for some constant c.

Hint: Consider g(x) = f(x)/(1 + x)α.

4. Conclude (1), i.e. c = 1 in the previous subproblem.

aThis extends the definition of the binomial
(m
n

)
for m ∈ N, 0 ≤ n ≤ m.

Solution

1. Let an =

(
α

n

)
xn. We have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣∣
α(α− 1) . . . (α− n)

(n+ 1)!
xn+1

α(α− 1) . . . (α− n+ 1)

n!
xn

∣∣∣∣∣∣∣∣
= lim
n→∞

∣∣∣∣α− nn+ 1
x

∣∣∣∣
= |x| lim

n→∞

∣∣∣∣ α

n+ 1
− n

n+ 1

∣∣∣∣
= |x| · 1 = |x| < 1.

By the ratio test, (an) converges.

2. As we have determined in (a),

∞∑
n=0

(
α

n

)
xn converges for |x| < 1. We can differentiate power series

term-by-term within their radii of convergence, so for |x| < 1,

(1 + x)f ′(x) = (1 + x)

∞∑
n=1

n

(
α

n

)
xn−1

=

∞∑
n=1

n

(
α

n

)
xn−1 +

∞∑
n=1

n

(
α

n

)
xn

=

∞∑
n=0

(n+ 1)

(
α

n+ 1

)
xn +

∞∑
n=1

n

(
α

n

)
xn

1
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= (0 + 1)

(
α

0 + 1

)
x0 +

∞∑
n=1

[
(n+ 1)

(
α

n+ 1

)
+ n

(
α

n

)]
xn

= α+

∞∑
n=1

[
(n+ 1)

α(α− 1) . . . (α− n)

(n+ 1)!
+ n

α(α− 1) . . . (α− n+ 1)

n!

]
xn

= α+

∞∑
n=1

[
(α− n)[α(α− 1) . . . (α− n+ 1)] + n[α(α− 1) . . . (α− n+ 1)]

n!

]
xn

= α+

∞∑
n=1

[
α[α(α− 1) . . . (α− n+ 1)]

n!

]
xn

= α+ α

∞∑
n=1

(
α

n

)
xn

= α

∞∑
n=0

(
α

n

)
xn = αf(x).

3. Since f is differentiable and (1 + x)α 6= 0 on |x| < 1, g(x) = f(x)/(1 + x)α is differentiable for |x| < 1.
We have

g′(x) =
f ′(x)(1 + x)α − αf(x)(1 + x)α−1

(1 + x)2α

=
(1 + x)α−1((1 + x)f ′(x)− αf(x))

(1 + x)2α

= 0

by assumption that (1 + x)f ′(x) = αf(x). Thus g(x) = c for some constant c, and

f(x) = g(x)(1 + x)α = c(1 + x)α.

4. Let f(x) =

∞∑
n=0

(
α

n

)
xn again. From (c), we know that f(x) = c(1 + x)α for some c. At x = 0, we have

1 =

(
α

0

)
= f(0) = c(1 + 0)α = c.

This completes the proof.

Problem 2
Suppose that (fn)n∈N : [a, b] → R is a sequence of continuous functions which converges uniformly to
f . Show that if xn → x where xn ∈ [a, b], then fn(xn) → f(x). Is this true if we don’t assume the fn
are continuous? Is it true if the convergence is not uniform?

Solution
We want to show the sequence of real numbers (fn(xn)) converges to f(x). Let ε > 0. Since (fn) → f

uniformly, choose N1 ∈ N such that if n ≥ N1, then |fn(y) − f(y)| < ε/4 for all y ∈ [a, b]. Notice that this
condition guarantees that if n ≥ N1, |fn(y)− fN1

(y)| < ε/2 for all y, since

|fn(y)− fN1
(y)| ≤ |fn(y)− f(y)|+ |fN1

(y)− f(y)| < ε/4 + ε/4 = ε/2. (2)

Since fN1
is continuous (at x in particular), there is some δ > 0 such that if |x − y| < δ then |fN1

(x) −
fN1(y)| < ε/2. Choose N2 ∈ N such that |xn − x| < δ for n ≥ N2.

Let N = max{N1, N2}. If n ≥ N , then |xn − x| < δ, so |fN1(xn)− fN1(x)| < ε/2. Thus

|fn(xn)− f(x)| ≤ |fn(xn)− fN1
(xn)|+ |fN1

(xn)− f(x)| < ε/2 + ε/2 = ε

2
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where the inequality |fn(xn)− fN1(xn)| < ε/2 is due to (2).
The statement is not true if we don’t assume the fn are continuous. Take

fn(x) = f(x) =

{
1 x = 0

0 x > 0

over [0, 1] for example. fn → f uniformly, but if xn = 1
n , xn → 0 but fn(xn) 6→ f(0).

The statement is also not true if we only assume fn → f pointwise only. Define, over [0, 2],

fn(x) =

{
1− nx x ≤ 1

n

0 x > 1
n .
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fn → f pointwise, where

f(x) =

{
1 x = 0

0 x > 0.

Setting xn = 2
n , we have xn → 0. But fn(xn) = 0 for all n, while f(0) = 1.

Problem 3

Suppose that f(x) =

∞∑
n=0

anx
n is an even function. Show that an = 0 for every odd n ∈ N. If f is odd

instead, show that an = 0 for every even n ∈ N.

Solution
Since f is even, f(x)− f(−x) = 0 for all x. So

∞∑
n=0

anx
n −

∞∑
n=0

(−1)nanx
n = 0.

Adding the two series together, the even terms cancel out, while the odd terms add:

∞∑
n=0
n odd

2anx
n = 0.

A power series is identically zero if and only if all of its coefficients are zero, so the above shows that an
must be zero for all odd n.

If f is odd instead, f(x) + f(−x) = 0 for all x, and the odd terms would cancel out:

∞∑
n=0

anx
n +

∞∑
n=0

(−1)nanx
n =

∞∑
n=0
n even

anx
n = 0.
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