
Tutorial 3: MAT157Y5 2021-2022

Problem 1
Let f(x) = 3x− 4. Let ε = 1

100 . Find a δ > 0 so that for all x ∈ R,

0 < |x− 2| < δ =⇒ |f(x)− 2| < 1

100

Solution
If δ = 1

300 , then for any x, if 0 < |x− 2| < δ, then

|f(x)− 2| = |(3x− 4)− 2| = |3x− 6| = 3|x− 2| < 3

300
=

1

100
.

Problem 2

Show that lim
x→0

1

x
6= 100 by proving the negation:

(∃ε > 0)(∀δ > 0)(∃x ∈ R)

[
0 < |x| < δ ∧

∣∣∣∣ 1x − 100

∣∣∣∣ ≥ ε]
Hint: since we are allowed to choose ε and x, it suffices to let ε = 1 and only consider positive values of
x.

Solution Choose ε = 1. Let δ > 0 be arbitrary. We consider two cases:

� If δ > 1
101 , then choosing x = 1

101 , we have 0 < |x| < δ and∣∣∣∣ 1x − 100

∣∣∣∣ =

∣∣∣∣ 1
1

101

− 100

∣∣∣∣ = 1 ≥ ε.

� If δ < 1
101 , then choosing x = δ

2 , we have 0 < |x| < δ, and since 1
x >

1
δ = 101,∣∣∣∣ 1x − 100

∣∣∣∣ =
1

x
− 100 > 101− 100 = ε.

Problem 3
For each of the following problems you may draw a graph to support your reasoning instead of giving
a full proof.a

1. Define h : R→ R, h(x) =

{
1 x ∈ Q
0 x /∈ Q

. Does lim
x→0

h(x) exist?

2. Define h : R→ R, h(x) =

{
x x ∈ Q
0 x /∈ Q

. Does lim
x→0

h(x) exist?

3. Define h : (−1, 1) \ {0} → R, h(x) =

{
x x ∈ Q
0 x /∈ Q

. Does lim
x→0

h(x) exist?

aDon’t do this on your assignment.

Solution It’s really inconvenient to draw a graph here, so I’ll just give a full proof.

1. No. We prove that lim
x→0

h(x) 6= L for any L ∈ R, i.e.

(∀L ∈ R)(∃ε > 0)(∀δ > 0)(∃x ∈ R)(0 < |x| < δ ∧ |h(x)− L| ≥ ε).

Let L ∈ R. We consider two cases:
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� If L = 0, then choose ε = 1. Notice that whenever x ∈ Q, |h(x) − L| = 1. So for any δ > 0,
choosing a rational x ∈ (−δ, δ) \ {0}, then 0 < |x| < δ and |h(x)− L| = 1 ≥ ε.

� If L 6= 0, choose ε = |L| > 0. Let δ > 0. We may choose an irrational x ∈ (−δ, δ), so that
0 < |x| < δ and |h(x)− L| = |0− L| = |L| ≥ ε.

Thus the limit doesn’t exist.

2. The limit exists and is equal to 0. To prove this, let ε > 0. We choose δ = ε. Then for any x such that
0 < |x| < δ,

� If x ∈ Q, then |h(x)− 0| = |x| < δ = ε.

� If x /∈ Q, then |h(x)− 0| = 0 < ε.

3. The limit exists here for the same reason it exists in (2). Notice that when we are evaluating lim
x→0

h(x),

h doesn’t actually have to be defined at 0.

Problem 4
Suppose f : R→ R satisfies

lim
x→∞

f(x) = L.

1. Write down the definition of
lim
x→∞

f(x) = L.

2. Write down the definition of

lim
y→0+

f

(
1

y

)
= L.

3. Show that

lim
y→0+

f

(
1

y

)
= L.

Solution

1. (∀ε > 0)(∃N ∈ R)(∀x ∈ R)[x > N ⇒ |f(x)− L| < ε].

2. (∀ε > 0)(∃δ ∈ R)(∀y ∈ R)[0 < y < δ ⇒
∣∣∣f ( 1

y

)
− L

∣∣∣ < ε].

3. We show that the statement in the previous subproblem holds. Let ε > 0.

Since lim
x→∞

f(x) = L, we may find a N ∈ R such that for all x ∈ R, x > N ⇒ |f(x)− L| < ε. We can

assume that N > 0, since if N ≤ 0 we can just choose a positive N instead. Now since N > 0, if we
let δ = 1

N , then δ > 0.

Let y ∈ R, and suppose 0 < y < δ. Then 1
y >

1
δ = N , so by our choice of N ,

∣∣∣f ( 1
y

)
− L

∣∣∣ < ε.

Problem 5
Recall that if f, g are defined in some interval around c ∈ R, and

lim
x→c

f(x) = M and lim
x→c

g(x) = N,

then
lim
x→c

[f(x) + g(x)] = M +N and lim
x→c

[f(x)g(x)] = MN.

This problem shows why it is necessary for limx→c f(x) and limx→c g(x) to exist in the above.

1. Give an example of an f, g defined in an interval around c ∈ R such that lim
x→c

[f(x) + g(x)] exists
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but lim
x→c

f(x) or lim
x→c

g(x) don’t exist.

2. Give an example of an f, g defined in an interval around c ∈ R such that lim
x→c

[f(x)g(x)] exists but

lim
x→c

f(x) or lim
x→c

g(x) don’t exist.

Solution

1. Let f : R → R, f(x) =

{
1 x ∈ Q
0 x /∈ Q

, and g : R → R, g(x) = −f(x). Let c = 0. As we have shown in

Problem 3, lim
x→c

f(x) doesn’t exist. But notice that for any x ∈ R,

f(x) + g(x) = 0.

Thus f(x) + g(x) is identically zero. So

lim
x→c

[f(x) + g(x)] = lim
x→c

[0] = 0.

2. Let f : R→ R, f(x) =

{
1 x ∈ Q
0 x /∈ Q

, and g : R→ R, g(x) = 0. Let c = 0. Again, lim
x→c

f(x) doesn’t exist,

and for all x ∈ R,
f(x)g(x) = 0.

So
lim
x→c

[f(x)g(x)] = lim
x→c

[0] = 0.

Problem 6
Use squeeze theorem in the following questions.

1. Write down the statement of squeeze theorem.

2. Define f : R→ R by

f(x) =

{
x x = 1

n for some n ∈ N
0 otherwise

Show that lim
x→0

f(x) = 0.

3. Show that for any function f : R→ R,

lim
x→c
|f(x)| = 0

if and only if
lim
x→c

f(x) = 0.

1. Suppose f, g, h : I → R, with I an interval, satisfy for all x,

f(x) ≤ g(x) ≤ h(x)

and
lim
x→c

f(x) = L = lim
x→c

h(x).

Then lim
x→c

g(x) exists and

lim
x→c

g(x) = L.
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2. Define f1 : R→ R, f1(x) = 0, and f2 : R→ R, f2(x) = |x|. We have, for all x,

f1(x) ≤ f(x) ≤ f2(x).

Furthermore,1

lim
x→0

f1(x) = 0 = lim
x→0

f2(x).

Thus by squeeze theorem,
lim
x→0

f(x) = 0.

3. Suppose limx→c |f(x)| = 0. Notice that for all x,

−|f(x)| < f(x) < |f(x)|.

We have
lim
x→c
|f(x)| = 0

and through the limit laws,
lim
x→c

[−|f(x)|] = − lim
x→c
|f(x)| = 0.

Since the two limits are equal, we may apply squeeze theorem to conclude that

lim
x→c

f(x) = 0.

As for the converse, actually I realized that squeeze theorem isn’t the best way to prove this, as the
argument is more convoluted than just using ε-δ, and it involves an ε-δ argument in proving some other
limit. But here it is anyway.

Suppose lim
x→c

f(x) = 0. We have, for all x,

min{−f(x), f(x)} ≤ |f(x)| ≤ max{−f(x), f(x)}.

Notice that
lim
x→c

min{−f(x), f(x)} = 0.

I’ll leave the full argument for this to you, but if |f(x)| < ε, then | − f(x)| < ε as well. Since
min{−f(x), f(x)} is equal to either −f(x) or f(x), we have |min{−f(x), f(x)}| < ε.

Similarly,
lim
x→c

max{−f(x), f(x)} = 0.

So applying squeeze theorem limx→c |f(x)| = 0.

1I haven’t justified why
lim
x→0

f2(x) = 0

but it shouldn’t be too much work to do this with an ε-δ argument. I’ll leave it up to you to complete this proof, if you’d like.
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