
MAT157 Tutorial 6

Firstly, some more practice on continuous functions.

Problem 1

- 1. Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous on [a, b]. Construct a function g which is continuous on \mathbb{R} , and which satisfies g(x) = f(x) for all $x \in [a, b]$.
- 2. Give an example to show that this doesn't need to be true if we only assume f is continuous on (a, b).

A function $f: D \to \mathbb{R}$ is **uniformly continuous** when

$$(\forall \epsilon > 0)(\exists \delta)(\forall x, y \in D)[|x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon].$$

Problem 3

- 1. Describe the (subtle but important) difference between "uniformly continuous" and "continuous".
- 2. Briefly explain why uniform continuity implies continuity. In other words, show if $f: D \to \mathbb{R}$ is uniformly continuous, then it is continuous everywhere in D.
- 3. Give an example of a function $f: D \to \mathbb{R}$ that is continuous but not uniformly continuous.

$$\frac{1}{1} \int Undersly - cts = (4 \times 2 \times 2) (3 \times 2 \times 3) (4 \times 2 \times 2) [1 \times 2 \times 2 \times 3) (4 \times 2 \times 3) [1 \times 2 \times 2 \times 3) (4 \times 2 \times 3) [1 \times 2 \times 2 \times 3) (4 \times 2 \times 3) [1 \times 2 \times 2 \times 3) (4 \times 2 \times 3) [1 \times 2 \times 2 \times 3) (4 \times 2 \times 3) [1 \times 2 \times 2 \times 3) (4 \times 2 \times 3) [1 \times 2 \times 3) (4 \times 3) ($$

Problem 4

Decide whether each of the following functions is not continuous, continuous, or uniformly continuous. You do not have to give a formal proof.

1.
$$f:[0,\infty) \rightarrow \mathbb{R}, f(x) = \sqrt{x}$$
.
2. $f:(0,\infty) \rightarrow \mathbb{R}, f(x) = \frac{1}{x}$.
3. $f:\mathbb{R} \rightarrow \mathbb{R}, f(x) = \sin(x) + \cos(x) + 99x$.
5. $f:\mathbb{R} \rightarrow \mathbb{R}, f(x) = x\sin(x)$.
6. $f:\mathbb{R} \rightarrow \mathbb{R}, f(x) = (x - 3\sqrt{x} + \sin(x))(\cos(x) - 727)$
1. (c,m) though slope gets close to ∞
 (c,m) the close goster).
2. Using charter in the close of the formula (charter in the close gester).
 (c,m) the close is bounded by 1)
 (c,m) the close is bounded by 1)

$$\frac{4}{4} \frac{1}{4} \frac{1}$$

Want cs cs 12-y1 < 1x1 fly1 <5 Choose keil lorge enough so that $\frac{1}{\frac{1}{2}+2\pi k} < \frac{5}{2}$ Choose $l \in A$ large every so that $\frac{1}{\pi l} < S$. Lef $\chi = \frac{1}{\frac{\pi}{2} t2\pi k}$, $y = \frac{1}{\pi l}$. $\frac{s}{2} + \frac{s}{2} = s.$ Gind $|s_{in}(\frac{1}{2}) - s_{in}(\frac{1}{2})| = |s_{in}(\frac{1}{2}+2\pi k) - s_{in}(\pi k)|$ = - 0 = > 2. as herded.