MAT157 Tutorial 9

Problem 1

1. For n > 1 € N, consider the function

fo(@) =z 4+ /z+ /.

— —

n times

For example, f1(z) = /= and fo(z) = \/z + /z. For n > 1, find a formula for f,,1(z) in terms
of fn().

2. Use the chain rule to find a formula for f] ;(z) in terms of f] ().
3. Using your previous formula, write the explicit formulas for f3(z) and f5(z).
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The Mean Value Theorem states that if a function f : [a,b] — R is continuous on [a, b] and differen-
tiable on (a, b), then there exists ¢ € [a, b] such that

Problem 2
Suppose that f: R — R is differentiable everywhere.

1. If f/(z) = 0 for all z € R, show that f is constant.

2. If f'(z) > 0 for all z € R, show that f is strictly increasing.
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Problem 3
Let f: R — R be differentiable everywhere and suppose f’ is bounded. That is, there is M € R such

that |f/(z)| < M for all z € R. Show that f is uniformly continuous.*
Hint: show that if x <y, then |f(z) — f(y)| < M|z — y|.

9Recall that a function f : R — R is uniformly continuous when (Ve > 0)(3§ > 0)(Vz,y € R)[lz —y| < § —
[f(@) = FW)| < €]
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is bijective, and f~Vis O with

formula.

The Inverse Function Theorem states that if a function f : R — Ris O (differentiable with continuous
derivative), and f’(p) # 0, then there exists open intervals U containing p and V' containing f(p) such that

fiU =V f(2) = f(z)

F'w)

__
F(F1w)

In other words, f is locally invertible, and its local inverse’s derivative can be computed using the above

Problem 4

What is its derivative?

Give an example of a differentiable function f : R — R such that f’(p) = 0 yet f is still locally invertible.
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Problem 5

We define arctan : R — [-%, 5] as the inverse of tan with its domain restricted to [—%, 7] to ensure
injectivity. Using the Inverse Function Theorem, find the derivative of arctan.
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Problem 6

Consider the function
1

T

) x#0

z = 0.

fiR— R, f(z)= {g+x2sin(
1. Find the derivative of f at 0.

2. Find the derivative of f elsewhere. This, combined with 1, shows that f is differentiable.
3. Show that 136

lim f'(x) # £(0).
Conclude that f is not C'.

It turns out that this function is not locally invertible: given any p > 0, the restriction of f to (—p, p)
is not injective. This is why it is necessary that we assume f is C' in the Inverse Function Theorem.

f(z)
0.5
[ ) z
—0.4 —-0.2 0.2 0.4
—0.5
| f:R—>R,f(z):{§+zzsin(“l-”) 27:8
X‘(( X\’ Q\‘m ”(‘;k\h)
0 Yoo I
((heo uhn D Wt W sald)
‘\'c‘\d% |<M"ﬂ) o9 N
h ‘/E:a \ - h S“”Clﬂ = |

~h< h sa CAREN

Loh =0 = Un

W o

Ty dm hosa (-0

S hlo
d . 1)
Lo B )s 1 b B e o ()
- |+ 2 $A (J}) ‘(fobtf‘x)
'[:L\v\& E»Q v
v8701 q" \7&\<8 Qud\

L) - sl 2 ¢



- [)\L n:/\_}[ P’(u)
s
bk e

Cl%""\ C\—/btﬂ L} ) [O‘thcg NRETATSIY ‘aﬁj\

Nitie: wslo) = © [- 281 M v cez

Lot 2147 Lt §>0.

O\LDSQ L(U [Olr?ﬁ U"’\b\ (3, (‘{‘l\’u| L_-’) \—l,: Zl’, T
ot 55< @ 35 o

ﬂ\ev\ SZ/\LJ;\-_ Slm(')_L-q\ o

(Y C‘XS\\ = (e Clt\ﬂ = |

‘ll S‘n(.lx\ ~(O\(.'}\)\ - |‘ ‘ | = | 2 ¢ .
I o~

| F60- F (ol 2¢,

\ 1
X hbf Conlind ous /




